
51

 ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2010. No. 8(104)
 ELEKTRONIKA IR ELEKTROTECHNIKA

SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
 T 120

SISTEMŲ INŽINERIJA, KOMPIUTERINĖS TECHNOLOGIJOS

Hard-Soft Real-Time Performance Evaluation of Linux RTAI Based
Embedded Systems

E. Dodiu, A. Graur, V. G. Gaitan
Stefan cel Mare University,
Universitatii no. 13, Suceava, Romania, phone: +40768887175, email: edodiu@usv.ro

Introduction

This article presents a few practical results obtained
by testing a specific hardware architecture based on one of
the most popular operating systems, Linux. We also added
a real time extension to see if it suits the demands of a
Hard or Soft real-time system.

Real-time systems are a bit different from the
classical ones because they have to offer a certain response
within a specified time period. With real-time systems,
correct execution of tasks will depend not only on the
correctness of the results but also on the time when they
are provided. Unlike soft real-time where deadline miss is
not a major problem, missing a time constraint in a hard
real-time system can cause severe material damage or even
human health injury [5],[10].

For this reason, real-time systems issue must be
analyzed accordingly. Real-time system design is often a
great engineering challenge because a lot of factors within
the system can modify significantly its stability.
Depending on the application, one can go for a hard real-
time controller if deadlines must always be satisfied or for
soft real-time if the application allows missing the time
limits .

Depending on the possibility of adding new tasks at
runtime, operating systems can be classified as static or
dynamic.

If static operating systems are frequently associated
with hard real-time, we cannot say the same for dynamic
operating systems. In the first case, a predefined number of
tasks are created at compile time without the possibility of
adding new tasks when the system is up and running.
Dynamic operating systems do allow insertion of new
tasks during runtime, so there is no need of stopping,
recompiling, reprogramming and restarting the devices.
From this point of view, the execution speed is in inverse
ratio to the scalability of task execution, and searching for
the optimal solution is a main task for system designers.

The main destination of Windows or Unix like
operating systems aims to Desktop computers, graphical
stations, workstations, mainframes. They are not for

industrial usage. We must emphasize that this huge
computing power of the previous mentioned machines
does not imply real-time execution as compulsory
regulation. Lately, engineers made considerable efforts to
classify those operating systems in the hard real-time
domain but their behavior shows that they are not the best
choice for industry embedded controllers.

This paper shows some practical results of tests that
were conducted on a custom hardware platform to point
out the system performances, jitter analysis, and whether
they can be classified as hard or soft real-time. Jitter is a
key element in evaluating system performance and real-
time capabilities. That is why we will insist on this topic in
the following pages. The paper consists of three main
parts: theoretical background of real-time scheduling,
architecture description and test case where practical
results will be evaluated and finally, there are the
conclusions.

RTAI (Real Time Application Interface) is a Free
Software project developed in the Department of
Aerospace Engineering of Politecnico di Milano(DIAPM)
by a team of engineers coordinated by Professor Paolo
Mantegazza. RTAI runs under Linux kernel space and due
to its integrated scheduling policies it allows real time
applications to be executed in a preemptive hard real-time
environment [2]. RTAI can run both in single and
multiprocessor environments [4],[8]. The RTAI Official
Website provides the latest versions of software, API
documentation and additional information for project
development. RTAI supports several hardware
architectures: x86 (with and without FPU and TSC),
x86_64, PowerPC, StrongARM, ARM7, and a few chips
from Cirrus Logic and Intel.

Similar testing has been performed by Eng. Peter
Laurich, founder of Akamina Technologies. In his article
“A comparison of hard real-time Linux alternatives”, he
evaluates the performance of native Linux and Linux with
RTAI for a high performance hardware platform. Most of
the benchmarks and testing done until now aimed at high
performance processors that go with desktop computers,
workstations, servers and other expensive computing

52

platforms. The intention of this paper is to provide
performance evaluation results for a custom hardware
platform that uses one of the most used processors in
multimedia, gadget and industrial applications, the
ARM920T processor.

Mathematical model of a real-time task

Tasks are the main entities that are executed in a real-
time operating system. They can be periodic or aperiodic
and they may have time restraints [5, 6].

Fig. 1. Task main parameters: r – release time (periodic or event
triggered); C – worst case execution time; D – task relative
deadline; T – task period (specific only to periodic tasks)

If a task has a real-time constraint, then we can also
talk about the absolute deadline, which is described by: d =
r + D. Missing the deadline d determines a miss of a time
constraint that is imposed for that task, which represent a
major fault for real time systems. All four parameters
mentioned above are present in case of periodic tasks but T
is missing for the aperiodic ones. For aperiodic tasks,
successive release times are of the following form: rk
=r0+kT where r0 is the time of the first release and rk is the
execution with sequence number k+1. Absolute deadlines
are described by the equality dk=rk+D ; if D=T then the
maximum admitted execution time (deadline) is equal to
the period. A task is well formed if the expression 0<C≤D
≤T is true [1].

The following parameters that are derived from the
above relationship are presented below:
-u = C/T is the processor utilization factor for a running
task and must always be equal to or less then 1
-ch = C/D is the processor load factor and must always be
equal to or less then 1:

− s is the start time of task execution;
− e is the finish time of task execution;
− D(t)=d-t is a residual relative deadline at time

t:0≤D(t) ≤D;
− C(t) is the pending execution time t: 0≤C(t) ≤C;
− L=D-C is the nominal laxity of the task and

specifies the maximum lag for the start time s
when it has sole use of the processor.

Sometimes periodic requests must have fixed start
times and response times. The difference between the start
times of two consecutive requests, si and si+1 is the start
time jitter. The maximum jitter or absolute jitter is defined
as |si+1-(si+T)| ≤Gmax . The maximum response time jitter
is defined in the same manner [1].

The processor utilization factor for a set of n periodic
tasks has the following expression

U = ∑
=

n

i i

i

T
C

1
. (1)

The processor load factor for a set of n periodic tasks
can be evaluated using the following expression

CH=∑
=

n

i i

i

D
C

1

 . (2)

Because of the deadlines, neither the load factor (2)
nor the processor utilization factor (1) is enough to
evaluate an overload effect on timing constraints.
Additionally, the processor laxity parameter LP(t) was
introduced and it represents the maximal time the
processor may remain idle after t without causing a task to
miss its deadline. Furthermore the processor idle times are
the intervals where the processor laxity is strictly positive
[1].

Rate monotonic algorithm

If we had to make a scheduler taxonomy of the
selected software environment, we can say that it has the
following characteristics: on-line centralized scheduling,
preemptive environment and fixed task priority. The rate
monotonic algorithm was taken in consideration for
analyzing periodic tasks behavior in the test system. For a
set of periodic tasks, assigning the priorities according to
the RM (Rate Monotonic) algorithm means that tasks with
shorter periods get higher priorities. For a RM algorithm,
the worst case scenario is to have all the tasks from a task
set triggered at once (r0=r1=r2=…=rn=0).

Considering two tasks, t1 and t2 with T1<T2 and
D1=T1, D2=T2, it is possible somehow by mistake to
assign a higher priority to the task with the shorter period.
In this case it is important that the inequality C1+C2 ≤ T1
to be satisfied [1]. If the correct assignment of priorities is
done, and considering β=T2/T1 the number of periods of
task t1 entirely included in the period of t2, then the
following statements are correct:

C1 + C2 ≤ T1 => (β +1) · C1+ C2 ≤ T2 , (3)

C1 + C2 ≤ T1 => β · C1 + C2 ≤ β ∙ T2 . (4)

Statements from (3) and (4) show that if the schedule
is feasible by an arbitrary priority assignment, then it is
also feasible by applying the RM algorithm. Schedulability
test for this algorithm implies determining the upper bound
Umax processor utilization factor. For the same tasks
mentioned above this is determined by using relation (5)

Umax =
1

1

T
C

+
2

max2

T
C

. (5)

The generalized result for a set of n periodic tasks is
done using the following relation

 U = ∑
=

n

i i

i

T
C

1

≤ n·(21/n-1). (6)

Due to priority assignment based on task periods, the
RM algorithm performs well for tasks where relative
deadlines are equal to periods. The condition (6) is
sufficient for processor utilization factor [1].

53

Performance characteristics of Linux RTAI based
systems

Since Linux tasks present a variable jitter of
unaccepted values, embedded systems built using this
operating system are not real-time. To improve system
performances and for adding real-time support RTAI
extension was taken in consideration [2].

RTAI was built as additional part for Linux and can
be executed both in kernel mode as well as user space.
With RTAI, engineers can create tasks that run in the
kernel address space with a higher priority than the kernel
itself. Usually, the kernel is assigned with the lowest
priority in the system and, by means of scheduling policies,
the RTAI dispatcher is able to execute higher priority or
greater urgency tasks.

Test equipment description

Since RTAI does not provide hardware support for
the new ARM920T based chips integrated by Cirrus Logic
we decided to use the Adeos Patch file for 2.4.26 kernel
provided by Technologic Systems that came with the TS
7300 test board. New kernel support for the specified
architecture is still in progress.
For testing we used the following software and hardware
tools:
HARDWARE
- Technologic Systems TS7300 test board with the

following components:
- EP9302 Cirrus Logic Processor (ARM920T

at 200MHz);
- 32 Mbytes Samsung SDRAM;
- Peripherals: IO ports, USB port, JTAG,

CAN, USART;
- Real time clock;
- Altera CycloneII FPGA directly

programmable from Linux;
- SD card storage;
- PC104 expansion slot.

- Power supply.
- 5 port Ethernet Switch.
- Compact Flash programmer.
- Tektronix TDS2024B oscilloscope.
SOFTWARE
For the development board:
- Linux Debian operating system;
- 2.4.26 Kernel;
- Adeos Patch for Technologic Systems;
- RTAI version 3.2;
- GCC 3.3.4 compiler for ARM;
- Glibc 2.3.2 libraries for ARM;
For PC development:
- Red Hat Linux 9.0;
- Cross compiler for ARM;
- 3.2.2 GCC compiler (Red Hat Linux 3.2.2-5).

Preparing the test environment

Preparing the test environment implies a series of
steps that are described next. The order in which they are
written is important.

Crosscompiler build. This step implies downloading
and compiling of crosstool-0.28. For this
LD_LIBRARY_PATH variable must be initialized with a
null string and then from the file “demo-arm.sh” the line
“cat arm.dat gcc-3.3.4-glibc-2.3.2.dat sh all.sh -notest”
must be uncommented. Compilation is initiated using
“./demo-arm.sh” command.

Installation of modutils-build. This is done according
to the following procedures:
- The package must be decompressed using “tar –

jxvfmodutils-2.4.26.tar.bz2”command.
- Installation script is configured using:

“../modutils-2.4.26/configure –prefix=/home/user/… --
target=arm-unknown-linux-gnu”.

- Export necessary system variables
“Export PATH=/opt/crosstool/arm-unknown-linux-
gnu/gcc-3.3.4-glibc-2.3.2/bin:$PATH”.

- Install with “make” and “make install” commands.
Apply ADEOS patch. This patch is a chunk of low

level code that is used to build the hardware abstraction
layer between Linux and the hardware platform on which it
runs, in this case, the EP9302 processor.

The patch is applied in the following steps:
- “tar –zxvf linux24-ts8-kernelsource.tar.gz”;
- “cd linux24”;
- “patch –p1 <cale-catre-

adeos/ts72xx_ts8_adeos.patch”.
Kernel compilation. Using the new crosscompiler

obtained in the previous step, the kernel is compiled for
ARM architecture. First, it is extracted from the containing
archive using “tar –zxvf tskernel-2.4.26-ts11-src.tar.gz”

The variable CROSS_COMPILE must be set to “arm-
unknown-linux-gnu-” in the makefile. Depmod must also
be set to “Export PATH=/opt/crosstool/arm-unknown-
linux-gnu/gcc-3.3.4-glibc-2.3.2/bin:$PATH”, and next, the
kernel build is done by means of the following statements:
- “Make ts7200_config”;
- “Make oldconfig”;
- “Make dep”;
- “Make vmlinux”;
- “Make modules”;
- “Make modules_install”.

This last command also builds the modules that will
be used further with the kernel.

Experimental results

This section contains the experimental results for the
jitter and preemption latency test cases. The test programs
are compiled on a desktop PC with the same compiler that
was used for kernel building since using a different
compiler will trigger an “insmod“ error when trying to
insert the test module into the kernel address space. For
maximum efficiency, we used RTAI as a kernel module
and for that reason test programs were compiled also as
kernel space modules. Thus, we were able to test the real
power of Linux when it comes to dynamic scheduling.
Each of the test modules, including RTAI, can be inserted
during runtime without the need to restart the machine
which brings a major advantage as compared to other
operating systems since the machine’s uptime is not

54

affected. Anyway, writing kernel modules requires
following the same strict rules of coding that are used in
device drivers [9]. Time intervals were measured using a
pin toggle method and because access to pin data registers
is not possible using pointers, a call to “request_region()“
was necessary. This function receives as parameter the
starting address of the memory region to be used and an
offset in bytes that specifies the size of the region. The
time intervals are measured using a Tektronix 2024B
oscilloscope synchronized on the rising edge of the signal
(Fig. 2). This measuring instrument allows keeping on the
screen all the variations of the signal in a specified time
interval as this can be seen for the falling edge from Fig. 2.
The measuring instrument also provides information about
the period and the frequency of the signal between the two
cursors. Each test was performed for about 30 minutes to
have enough time to see the jitter variation, but even
though this time interval is big enough, the values obtained
herein will not show the worst case scenario.

Jitter test case 1 – idle CPU

This test shows the jitter of a 300 µs recurrent task

when the processor is idle for most of the time (Fig. 2). In
the picture, the main 300 µs rectangular waveform that
actually defines the task execution time is represented with
high intensity yellow, and the jitter is low contrast yellow
near the falling edge of the signal. Since the worst case
value for this test is 22 µs, the jitter is at most 7,4% from
the task’s main period because, even if we consider that the
CPU is idle, it still runs the scheduler and some system
services.

Fig. 2. Jitter for idle CPU

Jitter test case 2 – full load CPU

What is really important is to see how the system

performs when high CPU consumer tasks need to be
executed. Tasks with intensive DMA accesses, Ethernet
traffic, memory page swapping and disk or compact flash
accesses are only a few examples of high CPU consumer
applications. From the above mentioned “ping –f”
command performs just well by keeping the CPU in full
load. Actually, the system sends ICMP packets in bursts
without waiting for a response from the target interface.

The results for this second test case are presented in Fig. 3.
As we may observe in this situation, the jitter has a bigger
value than in the previous case. The worst case jitter value
obtained here is 100 µs, and this actually represents about
33% from the expected 300 µs period of the task. We will
make a few comments about this result in the conclusions
section of this paper as this isn’t what we had expected.

Fig. 3. Test case 2 jitter - full processor load

Using the same test cases, we performed a few
measurements for different task periods. The results are
shown in Table 1.

Table 1. Jitter values for different task periods

Task period
(µs)

Minimum jitter
value (µs)

Maximum jitter
value (µs)

300 3 100
500 2 92

1000 2 80
2000 2 72
5000 2 66

10000 2 94

Preemption latency and task switch time test case

Preemptive multitasking allows embedded systems to
be more reliable when it comes to catching and processing
external asynchronous events. Unlike cooperative
scheduling, each task can be interrupted from its activity
by a higher priority task and this is a major advantage as
external asynchronous events can be processed in real-time
by dedicated software routines in the same processor
system. In a real-time system it is very important to keep
the preemption latency to minimum. All the extra delay
will finally consume useful time from the task execution
interval. Control is not passed instantly to the task which is
responsible for exception processing, and this can be seen
in Fig. 4.

Tex is the time when the external event first signals
the control system. After a very short time, when the
vectored interrupt controller provides the address of the
service routine, control is passed to the code from ISR at
time Tisr. The task that computes the external event
request will not take control until a context switch is
performed at Tcs. This action saves the context of the
running task (internal processor registers and the program

55

counter) to a stack, and gives control to the new task that is
elected by the scheduler.

TIME

VIC response ISR Context switch Task execution

External
event

Start of
control task

Interrupt latency Ti

ISR start
OS

notification

Tex Tisr Tcs Tex

Fig. 4. Preemption latency intermediary states

EP9302 processor has 4 timers that can be used for
time measurements but certain aspects determined us to
use the pin toggle method. Three of them are sourced by a
508 KHz clock and the fourth by a 983.04 KHz reference,
which gives us a resolution of about 1.96 µs and 1.01 µs
respectively. This time resolution is good enough but
because reading timers requires additional processing time,
the decision was to use the oscilloscope measurement.

The test environment is built using the same hardware
tools as in the previous tests, but additionally, a rectangular
wave generator was added. This is used to trigger an
interrupt using a 1 KHz rectangular signal that is applied
on a pin with interrupt generation possibility. A task is
programmed to answer the external event by toggling
another IO pin from the same expansion connector of the
test board. Both signals are recorded simultaneously using
two probes, and the lag between the rising edges of the two
rectangular pulses represents the latency we intend to
measure (Fig. 5).

 The last test case is performed to make a few
observations on the task switch time for the proposed
hardware/software architecture. As mentioned before,
passing control to a higher priority tasks requires
intermediary steps that have as main goal to save the
context of the interrupted task to a stack.

Testing was performed in the same manner for full
and minimum load processor for a range of input
frequencies between 10KHz and 500Hz. The results are
presented in Table 2.

Table 2. Preemption test latency for minimal and full load
processor

Stimulus signal
frequency

(Hz)

Minimum load
(µs)

Full load
(µs)

500 42 42
800 40 42
1000 40 42
5000 42 44
8000 39 43

10000 41 44

Table 3 presents the results of the task switch time from a
low priority to a high priority task.

Table 3. Task switch times for different processor loads

 Minimum load (µs) Maximum load (µs)
min 28 30
max 32 38

Fig. 4 shows that interrupt latency takes a bit more time
because of the hardware response and the ISR execution
that happens before the context switch to the new task that
will serve the external request. In this situation, the total
time of the interrupt latency is Ti=Tex+Tisr+Tcs. On the
other hand, the task switch time will only execute the
context swapping (Tcs) and this can easily be seen by
comparing results from Table 2 and Table 3. Depending on
the hardware architecture, this process of context saving
can spend less or more time. Practical results showed us
that the ARM920T processor can produce impressive
throughput with over 309 Mbytes/s at 200MHz core clock
using block transfer STMIA instructions. That is why
overall system performance depends on both the hardware
architecture and the way the software is built.

Fig. 5. Interrupt latency. The yellow is the input stimulus signal
and the blue one is a small task that is triggered by the pin status
change ISR. The task is triggered both on the rising and the
falling edge of the input signal depending on the actual
configuration of the interrupt associated with that I/O pin.

Conclusions

As mentioned in the introductory part of the paper,
high level operating systems do not have the best suited
performances for real time applications. Even though, we
showed that the proposed hardware and software
architecture can obtain good raw performance as compared
to other operating systems from the same category (e.g.
Windows).

Generally, a Windows Mobile based embedded
device cannot go down below 1 ms resolution. Obtained
results are way better than the previous mentioned value
and the order of magnitude is with at last one order smaller
than the Windows systems. As we see in the test case 2,
the jitter at full processor load has a tendency to drop as
the task period increases. For the first value in the Table 1
the result is not satisfactory since the jitter value is at most
33% from the task’s main period. Thus a 300 µs task
would often become 400 µs in width possibly delaying
other important processes in the system. With high
frequency real-time systems this is not acceptable. As for
the larger period tasks, the jitter seems to be acceptable as
long as it will not exceed the values imposed by system
designers. Depending on the application, this system may

56

be used as a hard real-time controller, but it couldn’t be
used for controlling an anti-lock brake system because of
the high jitter of the low period tasks. Since any hard real-
time control system is without doubt better than a soft real-
time controller, the system can be used without problems
with soft real-time control. Taking in consideration the
proposed hardware architecture with its 200 MHz
processor the overall impression is good. By using this,
one may benefit from the high level services offered by
Linux, file systems, MMU, software tools, as well as the
real time performance that comes with RTAI. As a future
work, we will try to add some new improvements to real-
time system performance using cache locking mechanisms.

References

1. Cottet F., Delacroix J., Kaiser C., Mammeri Z.

Scheduling In Real–Time Systems. – England: John Wiley &
Sons Ltd, 2002.

2. Zhang G., Luyuan C., Yao A. Study and Comparison of the
RTHAL–Based and ADEOS–Based RTAI Real–time
Solutions for Linux // First International Multi–Symposiums
on Computer and Computational Sciences, 2006.

3. Chiandone M., Cleva S., Sulligoi G., PC–based feedback
acceleration control using Linux RTAI // 13th European
Conference on Power Electronics and Applications, 2009.

4. Balasevicius L., Dervinis G., Baranauskas V., Derviniene
A. Identification of the Unknown Parameters of an Object //

Electronics and Electrical Engineering. – Kaunas:
Technologija, 2010. – No. 4(100). – P. 33–36.

5. Li Jun, Yang Fumin, Lu Yansheng, A feasible
schedulability analysis for fault–tolerant hard real–time
systems // 10th IEEE International Engineering of Complex
Computer Systems, 2005.

6. Chang–Gun Lee, Joosun Hahn, Yang–Min Seo. Enhanced
analysis of cache–related preemption delay in fixed–priority
preemptive scheduling // The 18th IEEE Real–Time Systems
Symposium, 1997.

7. Ho I., Jin–Cherng Lin. A method of test cases generation
for real–time systems // First International Symposium on
Object–Oriented Real–time Distributed Computing, 1998.

8. Morkūnas K., Šeinauskas R. Circuit Reset Sequences based
on Software Prototypes // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2010. – No. 7(103). –
P. 71–76.

9. Rubini A., Corbet J. Linux Device Drivers, 2nd ed. –
O’REILLY, 2001.

10. Ching–Chih Han, Kwei–Jay Lin, Chao–Ju Hou.
Distance–constrained scheduling and its applications to real–
time systems // IEEE Transactions on Computers, 1996. –
Vol. 45. – P. 814–826.

11. Gaitan N. C. Real-time Acquisition of the Distributed Data
by using an Intelligent System // Electronics and Electrical
Engineering. – Kaunas: Technologija, 2010. – No. 8(104). –
P. 13–18.

Received 2010 02 15

E. Dodiu, A. Graur, V. G. Gaitan. Hard-Soft Real-Time Performance Evaluation of Linux RTAI Based Embedded Systems //
Electronics and Electrical Engineering. – Kaunas: Technologija, 2010. – No. 8(104). – P. 51–56.

A system is considered to be a hard real-time if all the computations are not only correct but their response is provided each time
before a fixed deadline. Missing a deadline for such a system can possibly produce severe material damage or human health injury,
therefore adequate testing and analysis should be done. This paper evaluates the suitability of a general purpose operating system like
Linux with a real time extension. As it can be seen further on, Linux has overall good raw performance that can make it usable for an
embedded system with industrial usage. To show the characteristics under full load stress, we have done several test cases for different
scenarios that will be presented next in the paper. Ill. 5, bibl. 11, tabl. 3 (in English; abstracts in English, Russian and Lithuanian).

Э. Додю, А. Граур, В. Г. Гайтан. Исследование производительности операционной системы RTAI в реальном времени //
Электроника и электротехника. – Каунас: Технология, 2010. – № 8(104). – C. 51–56.

Системы работающие в реальном времени отличаются дополнительном отказом, который может повлиять на здоровье
человека. Анализируются новые системы с применением операционных устройств типа „Линух“. Проведены эксперименты
при полной нагрузке системы для разных случаев работы системы RTAI. Ил. 5, библ. 11, табл. 3 (на английском языке;
рефераты на английском, русском и литовском яз.).

E. Dodiu, A. Graur, V. G. Gaitan. Linux RTAI operacinės sistemos našumo realiu laiku tyrimas // Elektronika ir
elektrotechnika. – Kaunas: Technologija, 2010. – Nr. 8(104). – P. 51–56.
 Kartais sistemoms dėl vienokių ar kitokių priežasčių sunku veikti realaus laiko režimu. Tokiu atveju skaičiavimai gali būti klaidingi
ar pateikiami anksčiau nustatyto termino. Dėl to gali sugesti technika arba kilti pavojus žmogaus sveikatai. Atliekami „Linux“
operacinės sistemos, kuri pasižymi dideliu našumu ir gali veikti kaip integruota sistema pramoninėse sistemose, bandymai ir analizė.
Atlikti iki galo apkrautos sistemos testai skirtingais atvejais. Il. 5, bibl. 11, lent. 3 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

	SYSTEM ENGINEERING, COMPUTER TECHNOLOGY
	T 120

