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1Abstract—We propose a method for reconstruction of the
high-dimensional phase space of the electroencephalography
(EEG) signal. The method is based on the selection of positive
trajectories from the phase space, distance-adaptive sampling
of the negative trajectories from the phase space, classification
of trajectories in the phase space, and reconstruction of a fuzzy
state of the signal for classification of EEG signals.

Index Terms—Adaptive classification, delay time
embedding, phase space, landmark signal, EEG, BCI.

I. INTRODUCTION

Brain-computer interface (BCI) is a communication
system that translates brain activity into commands for a
computer or other digital device [1]. Most BCI systems
work by reading and interpreting cortically-evoked electro-
potentials via an electroencephalogram (EEG) data. The
frequencies of these brain waves range from 0.5 Hz to
100 Hz, and their characteristics change dynamically
depending on the activity of the human brain [2].

BCI systems require correct classification of the EEG
signals for useful operation. Since the EEG signal may be
considered as chaotic [3], [4], the nonlinear dynamics and
chaos theory methods can be applied for analysis and
classification of the EEG data. Nonlinearity of the EEG and
other types of biosignals has been studied by applying
nonlinear analysis methods such as Detrended Fluctuation
Analysis (DFA) [5], Poincaré Plots [6], reconstruction of
Local Phase Space, segmentation of the EEG signal into
stationary fragments [7], application of non-linear operators
to the EEG time series [8].

Nonlinear analysis usually depends on the reconstruction
of the phase-space geometry of the signal from a small
number of observables. The first step is to embed data in a
higher dimensional phase space. The embedding method is
based on two theorems.

First, Whitney Embedding Theorem [9] implies that 2M +
1 independent signals measured from a system can be
considered as a map from the set of states to the 2M + 1
dimensional space, thereby reconstructing the phase space.

Next, Takens Embedding Theorem [10] proved that
instead of 2M + 1 generic signals, the time-delayed versions
of a generic signal would suffice to embed the M-
dimensional manifold.
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This paper proposes a method for reconstruction of the
high-dimensional phase space of the EEG signal. The
novelty of the method, first, is the concept of fractional
embedding, which extends linear embedding for fractional
time delays. Second novelty is the reconstruction of the
fuzzy state vector of the signal which is useful for in-depth
signal analysis and identification of signal landmarks [11].

II. PROPOSED METHOD

A. Preliminaries
The aim of binary classification is classification of the

members of a given set of objects into two groups on the
basis of whether they have some property or not.

Let us have two datasets of signal values: a positive
dataset 1 2{ , , , }P P P

pX X X and a negative dataset

},,,{ 21
N
n

NN XXX  , where }),({ TttxX i  is a time
series (signal), representing some real physical process
X sampled at time t , T is the index space, and p and

n are the size of the positive and negative dataset,
respectively.

Let us have a label function ]1,0[: X , which
indicates to which dataset a time series belongs to, i.e.,

1)(,  P
i

P
i XX  and 0)(,  N

i
N
i XX  .

The aim is to perform classification of unknown label
time series uX sampled from X , i.e., to find )( uX .

B. Method
The proposed method consists of the following stages:
1. Reconstruction of the high-dimensional phase space of
the signal.
2. Selection of positive trajectories from the phase space.
3. Distance-adaptive sampling of the negative trajectories
from the phase space.
4. Classification of trajectories in the phase space.
5. Reconstruction of a fuzzy state of the signal.
The stages are explained in detail in the following sub-

sections.

C. Reconstruction of Phase Space

The -dimensional phase space M is reconstructed
from a single observable )(tx , using the M-dimensional
vectors (trajectories) )])1((),(),([   MtxtxtxY  ,
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where  is the delay (lag), and M is the dimensionality of
the trajectory. We define the reconstruction of the phase
space as a function YX : , where  is the delay
parameter.

The classical method of delays allows only for  .
Our novelty is the modification of the classical delay-based
method to allow for fractional delay  . The value of

)( tx for a fractional delay  is calculated using the
linear interpolation as in (1)

( ( ))
( ) ( ) ( ).

x t x t
x t x t
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(1)

This step allows for dimensionality reduction of original
datasets, because usually TM  . The result of this step is
two datasets of signal trajectories: a positive dataset

},,,{ 21
P

Mp
PP YYY  and a negative dataset },,,{ 21

N
Mn

NN YYY  .

D. Selection of Positive Trajectories

We assume that a positive dataset PY is a mixed set of
trajectories, which consists of a subset of trajectories that are
similar to NY as well as of a subset of trajectories that are
different from NY .

The aim is to find a subset of positive trajectories PŶ
such that the distance between P

iŶ and N
jY is the largest.

We also assume that for any dataset iX there exists at least
one such positive trajectory such as described in (2)

ˆ ˆ,max ( , ),P P N
i j i jY D Y Y (2)

where ˆ ( )P P
i kY X , ( )N N

j kY X , YYD: is a
dissimilarity (distance) function between two trajectories.

Here we use the Euclidean distance, described in (3), as
the dissimilarity function. We specify the selection step as a
selection operator YY ˆ: 
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  (3)

E. Distance-Adaptive Sampling of Negative Trajectories
The result of the selection step is a positive trajectory

dataset }ˆ,,ˆ,ˆ{ 21
P

M
PP YYY  , which is significantly smaller than

a negative trajectory dataset },,,{ 21
N
Mn

NN YYY  . Using such
imbalanced datasets for classification is impractical, because
the classification results become biased [12].

To balance the dataset, we perform the distance-adaptive
sampling of a negative dataset NY as described in (4)

( ) ,N N
i jh Y Y  (4)

where ( , )N N
i jD Y Y  , , ,N

ii j Y ( )N N
j kY X , the ε-

neighborhood count function of trajectories. Let
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N
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

 be the sampling probability of N
iY .

The algorithm of the distance-adaptive sampling is as
follows:

1. Calculate a dissimilarity matrix D , where ),( jiD is a
distance (dissimilarity) between iY and jY .
2. Calculate a neighborhood array E , where )(iE is the

number of neighbors of iY which are at most at 
distance from jY .
3. Calculate the probability array P , where )(iP is the
sampling probability of iY .

4. Construct a sampled dataset NŶ , where NN
i YY ˆ if

pYp N
is )( , and p is a Gaussian distributed random

number from )1,0( .
F. Classification

Finally, the trajectory vectors are used as features for
classification.

For training datasets, we define a label function
]1,0[:ˆ Y , and assign 1)ˆ(ˆ P

iY and 0)ˆ(ˆ N
iY . The

result of training is a support vector model which is used for
classification of unknown label time series uX as follows:

1. Reconstruct a set of trajectories in the phase state
)( u

u XY  .

2. Perform classification of a set of trajectories uY and
obtain a set of trajectory labels uu

i
u

i
u YYYL  ),(̂ .

G. Reconstruction of a Fuzzy State of the Signal
The classification result of each trajectory is used to

reconstruct the state vector )(tS of the EEG signal as
described in (5)

1( ) .
t M u

k
k t

S t L
M




  (5)

The results are interpreted in terms of fuzzy logic as a
fuzzy probability of the state (positive or negative) of the
signal at time t .

Finally, a classification label is assigned to uX as
described in (6):

1,max ( ) ,
( )
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t
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(6)

where  is the threshold probability of the state.

III. METHODS

For our experiments, Datasets Ia, Ib (‹self-regulation of
SCPs›) and dataset IV (‹self-paced 1s›) from the BBCI
competition datasets (http://bbci.de/competition/) were used.
The datasets were taken from healthy subjects. In the first
two datasets the subject was asked to move a cursor up and
down on a computer screen, and received visual feedback,
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while his slow cortical potentials (SCPs) were recorded.
Dataset Ia [13] consists of 135 trials belonging to class 0

and 133 trials belonging to class 1.
Dataset Ib [13] consists of 100 trials belonging to class 0

and 100 trials belonging to class 1. Each trial consists of 896
samples from each of 6 channels. The sampling rate is
256 Hz, the recording length is 3.5 s.

In dataset IV [14], the goal is to predict the laterality of
upcoming finger movements (left vs. right hand) 130 ms
before key press. The sampling rate is 1 kHz. Down-
sampling to 256 Hz was performed before the experiments.
The set consists of 159 trials belonging to class 1 and 157
trials belonging to class 0.

All datasets were randomly partitioned into 5 parts, and 5-
fold cross-validation was used to evaluate the classification
results.

IV. RESULTS

Figure 1 shows some examples of the EEG signals taken
from Dataset Ib, channel 0.

a)

b)
Fig. 1. EEG signal (Dataset Ib, channel 0): a) 20 positive signals, b) 20
negative signals.

The results of the fractional time delay embedding of the
EEG signal into the high dimensional phase space is shown
in Fig. 2 (dataset Ib, channel 0). The plot shows that positive
dataset has a wider distribution of values than a negative
dataset (compare Fig. 2(a) with Fig. 2(b)). Such extreme
values (called landmarks [11]) can be exploited for signal
classification.

a)

b)
Fig. 2. Phase space reconstruction of EEG signals (dimension M = 2, time
delay τ = 9.5): a) 20 positive signals, b) 20 negative signals.

V. RELATED WORK

The idea of embedding has been used previously for
analysis of EEG data.

Athitsos et al. [15] proposed a method for approximate
subsequence matching by using embedding. Embedding
maps each database time series into a sequence of vectors,
so that every step of every time series is mapped to a vector.
Embedding is computed by applying full dynamic time
warping between reference objects and each time series.

Klonowski et al. [3] have estimated the embedding
dimension of the EEG signals of the same subjects to be
between 7 and 11.

Rohrbacker [16] has found that the EEG data has been
unfolded in 22-dimensional space. Anderson et al. [17] have
used a time-embedding dimension of 50 for a neural
network classifier.

Kroupi et al. [18] investigated how brain signals
represented by the EEG data interacted when watching
music clips. A non-linear measure was applied to determine
the driver/driven relationship between these two modalities.
The range of the embedding dimensions used for the EEG
segments was between 3 to 8.

Jianbo and Jing [19] used the recurrence time based
method for seizure detection. Their empirical evidence
shows that embedding dimensions from 3 to 6 are fine,
while time delays may be chosen from 2 to 6.

Yuan et al. [20] analysed the embedding dimension of
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normal and epileptic EEG time series. The study has found
that the embedding dimension reflects variation of freedom
degree of human brain nonlinear dynamic system during
seizure. The embedding dimension changes during seizure
and becomes different from that of normal EEG signals: the
average value of the embedding dimension of normal EEG
signals is 8, while the embedding dimension of the epileptic
EEG signals is 17.

VI. CONCLUSIONS

The advantages of the proposed method are: 1) the
reconstruction of the fuzzy state vector of the signal allows
for in-depth analysis of the signal and identification of
signal landmarks; and 2) fractional time embedding allows
for more flexible embedding.

The disadvantages of the proposed method are 1) the
determination of the delay time and the dimension ,
which allows to achieve best separation of trajectories from
positive and negative datasets, is a computationally hard
task if done by extensive search; 2) identification of signal
landmarks can be time-consuming if performed manually by
an expert; and 3) the method is susceptible to noise (this is
the main problem of all embedding-based methods), so the
accuracy of the method is hard to guarantee.

Further research will focus on proposing the
computationally feasible solution to finding optimal delay
time and embedding dimension values to achieve best
separation of positive and negative signal trajectories
considering time constraints of real-time BCI systems.
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