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1Abstract—The unscented Kalman filter (UKF) became very
attractive for the navigation sensors data fusion, because of
algorithm significant accuracy and implementation advantages.
The unscented Kalman filter is based on the unscented
transform (UT) to perform the estimation of the system states.
The main idea of the unscented transformation is following. It’s
more effective to approximate probability distribution function
than arbitrary transformation or nonlinear function.

The developed sensors data fusion algorithm using the UKF
is considered in this work. This algorithm was applied for the
state estimation of the loosely coupled GPS/INS integrated
navigation system. GPS/INS integrated navigation system
contains low cost inertial sensors and low cost GPS receiver. To
demonstrate the estimation performance, the processing of
sensors data was done using linear Kalman filter (KF),
extended Kalman filter (EKF) and UKF. As a result, UKF has
lower velocity estimation error than EKF during simulated
GPS signal outage.

Index Terms—Unscented Kalman filter, GPS outage,
microelectromechanical systems, inertial measurement unit.

I. INTRODUCTION

Nowadays, the data fusion from different sensors for the
performance improving of the low cost integrated navigation
system becomes necessary in the land vehicle navigation
application. Core to the integrated navigation systems is the
concept of fusing noisy measurements from GPS sensor,
inertial measurement unit using nonlinear estimation
techniques [1].

Modern MEMS technologies are offering light and low
cost sensors. But measurements of MEMS sensors are less
accurate and suffer from considerable noise level. The
measurements are inaccurate and noisy because of sensor
manufacturing technology itself and environmental effects
such as mechanical vibrations and temperature. It’s difficult
to find simple and exact system model for such sensors [1],
[2].

Currently, the most used technique to fuse the navigation
data is the extended Kalman filter. Also, the linear Kalman
filter can be used in some cases. Nonlinear estimation
algorithms (which are based on the probabilistic approaches)
are used for the GPS/IMU data fusion. The UKF can be
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mentioned as one of the perspective nonlinear estimation
algorithm for the land vehicle navigation for its accuracy and
implementation advantages [3], [4].

The core of the UKF algorithm is the UT transformation.
The UT was developed basing on idea that it is easier to
approximate a probability distribution function of the
analysed data using minimal set of the carefully selected
samples [5], [6]. The UKF generates a set of specific points
(sigma points) in such a way that this set approximates mean
and covariance of the state and produces the estimation
based on these points. The sigma points are propagated
through true nonlinear equations of system model. The UT
and the UKF have been introduced by Julier and Uhlmann
[5], [6].

For the nonlinear system models and for the object of
interest with not well defined system models, the UKF is
potentially better solution than the EKF. The UKF has
performance equivalent to the standard Kalman filter for
linear systems and can be used for the state estimation of
nonlinear systems without the linearization procedure
required for the EKF.

The details of the developed data fusion algorithm for
loosely coupled low cost integrated navigation system are
discussed in Section II. In Section III, we focus on the
practical application of the different data fusion techniques
(KF, EKF and UKF) for the land vehicle velocity estimation
during GPS signal outages. Also the results of performance
analysis for KF, EKF and UKF are discussed.

II. SENSOR DATA PROCESSING ALGORITHM

The considered integrated navigation system consists of
four sensors. These sensors are two MEMS accelerometers,
one MEMS gyroscope and one position sensor (GPS). The
inertial sensors were a part of self contained low cost IMU
MotionNode. The position sensor was the low cost GPS
receiver BU-353. The measurements of the sensors are
saved onto HDD of notebook. Then measurement data is
synchronized and processed by fusion algorithm.

The fusion algorithm of sensor data consists of the
prediction and updating step. For the prediction step, we
chose the frequency f2 = 50 Hz. This frequency perfectly
suits for our experiments, since the land vehicle is not
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moving faster than 30 m/s. The frequency of the updating
step is equal to the GPS output data rate f1 = 1 Hz. This GPS
data is used to compensate measurement errors in the
accelerometers and gyroscope readings. The algorithm block
diagram is shown in Fig. 1.

Fig. 1. The algorithm block diagram.

The navigation system state vector selected for the UKF is

[ ],
x z yk a a x z x z w yb b a a v v b w x (1)

where xab and zab are the estimates of accelerometer

biases, xa and za are the estimates of acceleration along x-
axis and z-axis, xv and zv are the estimates of velocities
along x-axis and z-axis of vehicle coordinate frame, ygb is

the estimate of gyroscope signal bias, yw is the estimate of

angular rate of vehicle around y-axis of vehicle coordinate
frame,  is the estimate of the heading of the vehicle. The
orientation of the vehicle coordinate frame is shown in the
Fig. 2. The longitudinal axis of the vehicle coordinate
system is x. The lateral axis of the vehicle coordinate system
is z, and the y-axis points downwards. The IMU is placed in
the car in order the IMU x-axis and z-axis has the same
orientation with the vehicle longitudinal and lateral axis.

Fig. 2. The vehicle coordinate frame.

The navigation system state vector is propagated with the
frequency f2 = 50 Hz between measurements [7]:
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where 1 , 2 , 3 are the fading factors; ixf , , izf , are the
raw measurements of MEMS accelerometers, iy, is the

raw measurement of MEMS gyroscope, T is the sampling
time. The values for the fading factors were determined
experimentally during the process of adjusting algorithm
parameters in order to guarantee acceptable performance of
the algorithm i.e. minimal estimation error of the vehicle
velocity. In most of the cases the fading factors were equal
to 0.9999. These fading factors could be estimated more
precisely using the linear prediction techniques.

The navigation system measurement vector is

[ ],k N Ey v v (11)

where Ev is the east component of the vehicle velocity,

Nv - is the north component of the vehicle velocity.
The observation model is given by the following nonlinear

equations:

2 2
, , , ,ˆˆ ˆ ˆ[( ) ( ) ] cos( ),N k x k z k y kv v v      (12)

2 2
, , , ,ˆˆ ˆ ˆ[( ) ( ) ] sin( ).E k x k z k y kv v v      (13)

These nonlinear equations are directly used in the UKF
algorithm.

The UKF procedure [5], [6] begins with the calculation of
2n + 1 sigma points 1kχ with a mean of 1ˆ kx and its
covariance 1kP

1 1 1 1 1 1ˆ ˆ ˆ[ ],k k k k k k        χ x x P x P (14)

where  is the scaling parameter, which defines the
distribution of  the sigma points (SPs), and  .,...,1 k
Next step of the UKF process is transforming of each sigma
point by use of the system dynamics

*
| 1 1[ ].k k k χ F χ (15)

Then compute the mean and covariance from the
transformed SPs:
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2 ( ) * *
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where Q is the process noise covariance matrix. Q is the
diagonal matrix with the elements, defined using the
technical data sheet for the sensors used in the considered
integrated navigation system and adjusted during the
algorithm runs in order to obtain the best performance of the
algorithm. ( )m

iW and ( )c
iW is a set of the scalar weights.

The weights are calculated as follows:
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where  is the secondary scaling parameter. This parameter
was set to zero during adjusting scaling factor  for
guarantying positive definite of the covariance matrix Pk

during all iteration steps of the algorithm.
After that we have to define a new set of SPs to

incorporate the effect of the additive noise [6]

| 1 ˆ ˆ ˆ[ ].k k k k k k k     
   χ x x P x P (19)

Then the SPs are transformed through the measurement
model

| 1 | 1[ ].k k k k υ H χ (20)

And predicted measurements from the transformed SPs
are calculated as follows
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Then, the observation covariance matrix
k ky yP and the

cross correlation matrix
k kx yP are determined as
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where R is the measurement noise covariance matrix.
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The Kalman gain factor is computed via equation of

1 .
k k k kk x y y y

κ P P (24)

At last, the updated states and the covariance matrix are
determined by:

ˆ ˆ ˆ( ),k k k k k
   x x κ y y (25)

.
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T
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III. FIELD EXPERIMENT RESULTS

In this part, the performance of the integrated INS/GPS
system is evaluated for open area application. The results
include velocity estimation accuracy analysis during GPS
data outages, which are simulated to analyze the system
performance in the prediction mode.

The car was driven on the asphalt road during field tests.
The vehicle movement trajectory is shown in the Fig. 3. The
IMU and GPS receiver were fixed rigidly on a board inside
the car. The minimal difference of the orientation of the y-
axis (IMU coordinate frame) and gravity vector was
achieved by alignment of the board. The tilts angles of the
board were carefully verified in order to guarantee required
orientation of y-axis. Finally, correct adjustment of the x-
axis gives minimal difference of the orientation of the
vehicle and IMU coordinate system. The sensors data during
experiment was recorded on the HDD of the notebook and
then processed using UKF, EKF [8] and KF [9]. Algorithm
was implemented using Matlab® software. These data
processing algorithms were adjusted in order to guarantee
minimal velocity estimation error (RMSE) in the presence of
the GPS signal.

Fig. 3. The vehicle movement trajectory on the map.

The estimation of the vehicle velocity, when GPS signal
outage occurs during 160 s using KF, EKF and UKF is
shown in the Fig. 4. The performance of the considered data
processing algorithms will be discussed in more details later.
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Fig. 4. The vehicle velocity estimation with GPS signal outage during
20 s...180 s.
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Now we would like to highlight that the analysed velocity
profile contains different types of the vehicle motion:
stationary periods during t  s82...0 and t  s198...175 ,
high dynamic periods with variable acceleration of the
vehicle during t  s115...82 and t  s175...137 , period
with nearly constant vehicle velocity t  s137...115 (see
reference velocity profile in the Fig. 4). The GPS signal
outages are simulated during mentioned above time periods
of the vehicle moving for the comparative performance
analyse of the sensor data processing algorithms. The tuning
parameters of data processing algorithms remain identical
for each of the analysed GPS signal outage simulation case.

The KF, EKF and UKF performance analysis for
stationary mode is given in the Table I. The GPS signal
outage time was equal to 60 s for each simulation. Only the
starting time for GPS signal outage was different, so that the
time period, when the vehicle was in the stationary mode
with the presence of the GPS signal, with each next
simulation was increased by 5 s. The velocity estimation
error (RMSE) continuously decreases (for the EKF and the
UKF) with increasing of the initial time of the vehicle
stationary mode with the presence of GPS signal. This is
correct behavior of the algorithm, which correctly estimates
errors of the inertial sensors and adequately models
considered here low cost integrated navigation system. As
we can see from the Table I, the velocity estimation error
was smaller for the UKF algorithm except the cases when
the initial time (in this case it is 5 s–6 s) for the UKF
algorithm adaptation was not enough.

TABLE I. VELOCITY ESTIMATION ERRORS* DURING GPS
OUTAGE.

Period of
GPS outage

KF EKF UKF
RMSE

km/h
∆V,

km/h
RMSE

km/h
∆V,

km/h
RMSE

km/h
∆V,

km/h
5…65 s 20.7 36.0 19.0 33.0 24.3 41.0
6…66 s 9.2 16.0 17.6 31.0 22.0 37.0

10…70 s 6.6 11.0 15.2 26.0 13.1 22.0
15…75 s 13.9 26.0 9.0 18.0 8.0 13.5
20…80 s 6.7 13.5 6.8 13.0 3.5 5.7
21…81 s 15.8 27.0 5.4 10.7 3.3 5.4

Note: *estimation of errors includes RMSE of velocity estimate (RMSE) and absolute
maximal estimated velocity error (∆V) during GPS signal outage.

The velocity estimation errors for high dynamic mode of
the vehicle motion are presented in the Table II. Very good
performance metrics for the KF, when vehicle was moving
with nearly constant velocity, are not surprising, because
parameters (acceleration and velocity of the vehicle,
accelerometer bias) of the system changes slowly during
small GPS signal outage period and hence it can be easily
predicted by KF. In all other cases the UKF algorithm
considerably outperforms the KF and the EKF algorithms.
The rather high value of the velocity estimation error
(RMSE) by the UKF for GPS signal outage during
120 s…180 s can be explained by the fact that the GPS
outage period starts quite quickly after high dynamic mode
of the car motion. This doesn’t allow for the UKF to
stabilize state estimates.

The velocity estimation error (for KF, EKF, UKF) reaches

maximum (∆V) in the end of GPS signal outage period,
when the car was in stationary mode or moving with nearly
constant velocity, but that’s not necessarily the case, when
the car was moving with variable acceleration.

TABLE II. VELOCITY ESTIMATION ERRORS* DURING GPS
OUTAGE.

Period of
GPS

outage

KF EKF UKF
RMSE,
km/h

∆V,
km/h

RMSE,
km/h

∆V,
km/h

RMSE,
km/h

∆V,
km/h

20…120 s 40.8 95.0 20.2 41.0 3.3 5.7

120..180 s 33.3 74.0 18.2 33.0 7.3 11.0

20…180 s 60.1 103.0 23.6 41.0 8.1 20.0

116..136 s 3.24 7.0 5.9 10.0 5.4 7.0

120..130 s 3.1 5.0 1.7 2.8 2.1 2.5

Note: *estimation errors include RMSE of velocity estimate (RMSE) and absolute
maximal estimated velocity error (∆V) during GPS signal outage.

IV. CONCLUSIONS

The comparative performance analysis of UKF, EKF and
KF for the car velocity estimation was performed for
different dynamic mode of the vehicle movement during
GPS signal outages.

The UKF algorithm adapted for the low cost sensors data
processing has smaller velocity estimation error during GPS
signal outages comparing with EKF algorithm. This is
especially obvious for the cases when vehicle has
experienced quick changes in the dynamics of car
movement. Also, the velocity estimation error (RMSE) is
weakly dependent from the average and top speed of the car.

The next step of this research should be devoted to the
definition of the optimal tuning parameters of the UKF
algorithm for the different car motion scenarios.
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