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Abstract—Viseme recognition from speech is one of the 

methods needed to operate a talking head system, which can be 

used in various areas, such as mobile services and applications, 

gaming, the entertainment industry, and so on. This paper 

proposes a novel method for generating acoustic models for 

viseme recognition from speech. The viseme acoustic models 

were generated using transformations from trained phoneme 

acoustic models. The proposed transformation method is 

language-independent; only the available speech resources are 

needed. The viseme sequence with corresponding time 

information was produced as a result of recognition using 

context-dependent acoustic models. The evaluation of the 

proposed acoustic models’ transformation method was carried 

out on a test scenario with phonetically balanced words, in 

which the results were compared to the baseline viseme 

recognition system. The improvement in viseme accuracy was 

statistically significant when using the proposed method for 

transforming acoustic models. 

 
Index Terms—Automatic speech recognition, hidden Markov 

models, human computer interaction, viseme modeling. 

I. INTRODUCTION 

Advanced human computer interfaces may include a 

virtual assistant [1] to achieve natural communication with 

the user. The virtual assistant is frequently visualized by 

facial animation in the form of a talking head [2], [3]. The 

perceptual quality of human-computer interaction can be 

improved if gestures [4] and various other characteristics of 

communication [5], [6] are included in the virtual assistant. 

Facial animation applies visemes as a basic speech unit. A 

sequence of visemes with appropriate time boundaries is 

needed to model the movement of a talking head’s mouth 

[7], [8]. There are two main approaches for creating this 

audio-to-visual conversion. If a speech synthesis module is 

used for generating the speech signal, a viseme sequence 

with time boundaries can be produced using mapping from 

the phoneme sequence, which is usually an intermediate 

result of a speech synthesis algorithm [9]. If the recorded or 

live speech signal is used for the talking head’s spoken 

modality, viseme recognition must be carried out in order to 

produce a viseme sequence with time information [10]. The 

research presented in this paper focuses on the second case,
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with emphasis on the acoustic modeling of visemes in 

speech. The baseline approach for viseme recognition from 

speech uses acoustic models, in which the models are trained 

as visemes from the initialization onwards. The main 

disadvantage of this approach is that one viseme usually 

covers more than one phoneme. As a result, it is therefore 

difficult to obtain a satisfactory model of acoustic-phonetic 

space. 

This paper proposes a new viseme acoustic modeling 

method, in which visemes are transformed from phoneme 

acoustic models and trained through subsequent steps as 

context-dependent viseme acoustic models. The proposed 

acoustic models’ transformation method is language-

independent, and can be used for any language with 

available speech resources. The experiments for evaluating 

the proposed method were carried out for Slovenian using a 

1000 FDB SpeechDat(II) database. 

The paper is organized as follows. The theoretical 

background on the transformation from phoneme to viseme 

acoustic models is given in Section II. The speech database 

is described in Section III. An overview of the experimental 

setup is presented in Section IV. The results are given in 

Section V, and the conclusion in Section VI. 

II. VISEME SPEECH RECOGNITION 

A viseme is a basic unit during visual speech processing 

[11]. It groups together within a speech signal all those 

phonemes that share the same mouth/lip shape (Fig. 1). 

Visemes as basic units of acoustic models represent much 

larger acoustic-phonetic space within the speech signal than 

phonemes, which are typically used as basic units in acoustic 

models for speech recognition. The main idea of the 

proposed method is to generate viseme acoustic models 

through transformation of phoneme acoustic models. It can 

be expected that the transformed acoustic models will be 

better suited for the specific recognition task. The 

transformation into viseme acoustic models is defined as a 

combination of adequate phoneme acoustic models. 

A single Gaussian continuous density HMM acoustic 

model has three different types of parameters: mean values, 

variances, and transition probabilities. The transformed 

viseme acoustic model V is defined as 
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Fig. 1.  Examples of visemes from the CUAVE multimodal (audio/video) speech corpus [12]. 

where Pi denotes a particular phoneme acoustic model and 

wi denotes the weight calculated for this phoneme acoustic 

model. The variable i denotes the current phoneme acoustic 

model from the pool of individual visemes. Ip is limited to 

the number of all phonemes that share the same viseme. 

The means of the transformed viseme acoustic model V 

are defined as 
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where μV and μPi denote the mean values of the transformed 

viseme and source phoneme acoustic models, respectively. 

The weight is represented by wi. 

The transformed viseme variances are set to the maximal 

variance for all the involved phoneme probability density 

functions 
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where V  denotes the variances of the transformed viseme 

acoustic model and 
iP  denotes the variances of the 

phoneme acoustic models, respectively. 

The last element of the transformed viseme acoustic 

model is a matrix with transition probabilities. The 

transformed transition probabilities are defined as 
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where V  denotes the transformed viseme transition 

probability and 
iP  denotes the transition probabilities of 

the phoneme acoustic models, respectively. The variable wi 

represents the weight. 

The influential weight wi in (1), (2), and (4) can be 

estimated using various approaches and metrics. In our case, 

the weight wi is defined as the proportion of the available 

spoken training material for each phoneme acoustic model, 

which is defined as 
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where ni denotes the number of feature frames per particular 

phoneme acoustic model and the sum of nj denotes the 

number of feature frames for all those phoneme acoustic 

models that belong to the same viseme. 

The advantage of the proposed transformation method is 

that existing phoneme acoustic models can be reused as a 

starting point for building viseme acoustic models. In this 

way, those available acoustic models potentially trained with 

complex algorithms can be re-used. The complexity of 

transformed viseme acoustic models is similar to those of 

baseline viseme acoustic models and smaller than if the 

phoneme acoustic models combined with phoneme-to-

viseme mapping during a post-processing step were to be 

used for viseme recognition. The lesser complexity of 

acoustic models results in faster recognition and less 

memory resources needed for operating the system. The 

level of available system resources is especially important in 

the case of a system with complex processing and modeling 

tasks, as is frequently the case when using talking heads and 

live speech recognition [4]. 

III. SPEECH DATABASE 

The experiments were carried out using the Slovenian 

1000 FDB SpeechDat(II) database, which is part of the 

SpeechDat family with more than 50 different languages 

available. A database of this type can be used to develop 

voice-driven services [13] and various applications. It was 

recorded over a fixed telephone with 1,000 different 

speakers within the set. The training set had 800 speakers; 

the remaining 200 were used for evaluation. During the 

designing of the database, special care was taken regarding 

the speakers’ demographic characteristics to ensure that the 

set was in optimum balance. Each recording session covered 

43 different utterances per speaker. 

The number of basic units within the speech database was 

important from the point of view of acoustic modeling [14]. 

There were 46 different phonemes in the Slovenian 

SpeechDat(II) database. Only the 27 most frequent 

Slovenian phonemes were used during the experiments. The 

remaining 19 phonemes were mapped into the more similar 

ones using phonetic expertise. The original speech database 

transcriptions were based on the phonemes. The appropriate 

viseme transcriptions were created by applying phoneme-to-

viseme mapping during the training pre-processing step. 

The MPEG-4 standard [11] defines 16 different visemes. 

The list of Slovenian phonemes and their mapping into 

MPEG-4 visemes is shown in Table I. The visemes that 

included the most phonemes were “PP”, “FF”, “kk”, “CH”, 

“SS”, and “nn”. The more specific Slovenian visemes – for 

example, “J” – included only one phoneme. The viseme 

“silence” was used to model long and short pauses in the 

speech signal.  

The evaluation of a speech recognition system can be 

done using various isolated and connected word scenarios: 

digits, numbers, persons’ names, city names, command 

words, and so on. The SpeechDat(II) subset of phonetically 

balanced isolated words (W set) was used for this purpose. 

Each speaker in the database uttered four different words. 

94



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 9, 2013 

There were a total of 1,491 different words within the set. 

From the acoustic modeling point of view, such a test set is 

very suitable for evaluation because the phonemes of the 

language are correctly represented within it. 

TABLE I. LIST OF MPEG-4 VISEMES. 

MPEG-4 Viseme Phoneme 

silence long pause, short pause 

aa a 

E e 

ih i 

oh o 

ou u 

eh @ 

RR @r 

PP p, m, b 

FF f, v 

kk k, g, x 

DD t, d 

CH tS, S, Z 

SS ts, s, z 

nn n, l, r 

J j 

 

The proposed method for viseme recognition was based 

on acoustic modeling. Therefore an isolated word test set 

was selected for evaluation and a viseme loop was applied as 

recognition grammar. Such an approach excluded the 

influence of the statistical language model on the viseme 

recognition results. 

IV. EXPERIMENTAL SYSTEM 

Two different experimental systems were developed. The 

modified monolingual COST 278 MASPER scripts [15] 

were taken as a starting point. The first experimental system 

was used as a baseline. It was completely designed based on 

viseme acoustic models. The visemes were produced during 

the first step because the phoneme-to-viseme mapping had 

already been carried out during the pre-processing of the 

training transcriptions. The second experimental system 

introduced the proposed method for transforming the 

acoustic models. In this case, first the phoneme acoustic 

models were trained, which were then transformed into 

viseme acoustic models in the second part of training. 

The speech signal was converted into features using the 

12 mel-cepstral coefficients and energy; thereafter, first- and 

second-order derivatives were calculated. The feature 

extraction window was 25 ms long with a 10 ms time shift. 

The final feature vector with 39 elements was constructed 

after cepstral mean normalization. 

Both experimental systems were based on the Hidden 

Markov Models (HMM) automatic speech recognition 

approach. Acoustic models with three-state left-right 

topology were used, in which continuous Gaussian 

probability density functions were applied to each model’s 

state. 

The first part of the training procedure, in which a 

generation of context-independent acoustic models took part 

[16], was identical for both systems. In the first step, the 

context-independent acoustic models were initialized with 

the global values and then trained with six iterations of 

embedded Baum–Welch re-estimation. The trained acoustic 

models were included in the forced-realigning procedure 

with the goal of improving the transcriptions and detecting 

outliers within the training corpus. The results of the 

realigning procedure showed that 0.13 % and 0.11 % of 

training utterances were classified as outliers and, as such, 

were excluded from the subsequent training procedures. 

In the second stage of the first part, the task was to train 

improved acoustic models for the second round of the forced 

realigning procedure. The second stage of the training 

procedure used the improved transcriptions to train a new set 

of context-independent acoustic models. This time, the 

initial values of the probability density function and 

transition matrix were set individually for each acoustic 

model. The acoustic models were trained in an iterative 

manner, in which the number of Gaussian probability density 

functions per state was increased in stepwise. The resulting 

context-independent acoustic models had 32 Gaussian 

mixtures per state. A second forced-realigning procedure 

was carried out, classifying less than 0.07 % and 0.06 % of 

utterances as outliers. 

The second part of the training procedure was diverse for 

the baseline and the transformed viseme experimental 

system. In the case of the baseline viseme system, the 

context-independent acoustic models were directly used to 

build the context-dependent version. On the other hand, in 

the case of the transformed viseme system, first the 

transformation from phoneme to viseme acoustic models 

was done using the proposed method. The transformed 

viseme acoustic models were then used to build the context-

dependent versions of the models. 

The large number of free acoustic models’ parameters was 

controlled by decision tree based state clustering. The 

increase of log likelihood after node splitting was used as the 

threshold to guarantee the same complexity for both versions 

of the acoustic models. The tied state context-dependent 

acoustic models were then further trained. During this final 

training, the number of Gaussian mixtures per state was 

again increased. Acoustic models with three complexities 

(low: 4, medium: 8, and high: 16 Gaussian probability 

density functions per state) were created for both versions. 

V. RESULTS 

The proposed method for the transformation of acoustic 

models from phonemes to visemes was evaluated in an 

indirect way, using the viseme recognition results. The 

results are presented as viseme accuracy (VA), which is 

defined as 

 (%) 100,
N S D I

VA
N

  
   (6) 

where N denotes the number of all visemes, S the number of 

substituted visemes, I the number of inserted visemes, and D 

the number of deleted visemes within the test set. Table II 

presents the viseme accuracy results, in which the baseline 

viseme acoustic models were used for evaluation. 

The baseline viseme acoustic models, trained from the 

initialization with visemes, achieved 57.99 % viseme 

accuracy using the low-complexity acoustic models. When 

the medium- and high-complexity acoustic models were 
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applied, the viseme accuracy improved to 61.95 % and 

64.21 %, respectively. This increase in performance is 

caused be increased complexity of the acoustic models, 

which can better model the acoustic-phonetic diversities of 

visemes. The baseline results achieved are comparable with 

the viseme recognition results of similar systems [17], [18]. 

TABLE II. VISEME ACCURACY WITH BASELINE VISEME 

ACOUSTIC MODELS. 

System complexity Viseme accuracy (%) 
Confidence 

interval (%) 

Low 57.99 ±2.86 

Medium 61.95 ±2.82 

High 64.21 ±2.78 

 

Table III presents the viseme recognition results, in which 

the transformed visemes were applied for the recognition 

task. 

TABLE III. VISEME ACCURACY WITH TRANSFORMED VISEME 

ACOUSTIC MODELS. 

System complexity Viseme accuracy (%) 
Confidence 

interval (%) 

Low 61.09 ±2.83 

Medium 63.80 ±2.79 

High 66.51 ±2.74 

 

The viseme accuracy improved by 3.10 % absolutely 

when using low-complexity transformed viseme acoustic 

models. In the cases of medium- and high-complexity 

transformed acoustic models, the absolute improvement of 

viseme accuracy was smaller: 1.85 % and 2.30 %, 

respectively. The best overall viseme accuracy of 66.51 % 

was achieved using the high-complexity transformed viseme 

acoustic models. This improvement reflected the fact that the 

transformed viseme acoustic models are better suitable for 

this complex recognition task. A plausible explanation 

would be that for the transformed acoustic models each 

viseme was built as a combination of phoneme acoustic 

models, and could therefore better model the speech signal 

than when viseme acoustic models were trained from the 

initialization onwards. 

VI. CONCLUSIONS 

This paper presented a novel approach for building 

acoustic models for viseme recognition tasks. The basic idea 

was to transform the existing phoneme acoustic models into 

visemes by taking into account the characteristics of the 

training data. The results of experimental evaluation show 

the benefits of transformed viseme acoustic models because 

statistically significant improvements in accuracy were 

achieved. The highest improvement was 3.10 % absolutely 

for the low-complexity models, and the best overall viseme 

accuracy was 66.51 % with the high-complexity models. 

Our future work will be oriented towards improving 

methods for calculating the weights wi. Another possibility 

of increasing the performance of a viseme recognition 

system would be in the area of a decision tree–based 

clustering algorithm. 
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