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Abstract—This paper considers the robustness of the 

differential pulse-code modulation system with higher-order 

predictors. Special attention is paid to the robust parametric 

stability of the prediction filters with respect to the predictor 

coefficients. A generalisation of robustness in the classical sense 

is performed, and appropriate relations for calculating the 

probability of robustness are derived using Kharitonov 

principle. The proposed robustness estimation method is used 

for the third- and fourth-order prediction filters on speech 

signals, where the application of traditional methods is too 

difficult. For this reason, the Monte Carlo method is used to 

solve complex probability integrals. Verification and error 

analysis are performed for the previously considered second-

order predictor. Satisfactory predetermined accuracy is 

achieved by increasing the number of samples. The results 

obtained could be very useful to design a system with suitable 

values for the predictor coefficients.  

 
Index Terms—Digital filters; Linear feedback control 

systems; Monte Carlo methods; Probability density function.  

I. INTRODUCTION 

Differential pulse-code modulation (DPCM) is a well-

known coding technique that has been used for decades in 

various fields of science and technology, especially in 

telecommunications, speech [1]–[5], image and video 

coding [6]–[9], medicine [10]–[13], and also in combination 

with other techniques [14]. The idea for this paper, as well 

as for some previous papers, is that the DPCM system 

contains a negative feedback loop, so that the 

telecommunication system is indeed suitable for analysis 

from the aspect of control system theory [1], [15]. 

The predictive linear (recursive) filter is the most 

important part of any DPCM system. In general, the 

prediction and design of various prediction models have 

been of great importance for years, and it seems that they 

are gaining even more importance today [16], [17]. Linear 

prediction is very important in many scientific and 

engineering fields, e.g., economics, geophysics, system 

identification, adaptive filtering, spectral estimation, signal 

processing, etc. [18]–[21]. Their role in the speech signal is 

particularly important [18]. This is quite understandable 

considering that the current value of the signal (current 

sample) can be well modelled as a linear combination of the 

previous values [1], [22]. A historical overview of the 

development of linear prediction in speech signal coding can 

be found in [23]. The closed-loop predictor forms a kind of 

filter that is a good model of the human speech apparatus. 

The main task is to determine the predictor coefficients and 

study the properties of the filter.  

The prediction gain increases slightly, i.e., it almost 

reaches saturation with an increase in the order of the 

predictor above four [1]. In this paper, therefore, a 

corresponding analysis will be performed up to the fourth 

order, although the same method could also be used 

effectively for higher orders. 

It is very important to investigate the properties of the 

DPCM system and, in particular, its linear prediction filter 

as its integral part. The stability of the DPCM system for the 

first-order predictor has been studied in [24], for the second-

order predictor in [25], and for higher-order predictors in 

[26]. We have explained why the stability analysis of the 

prediction filter is crucial for the stability and performances 

of the whole system (e.g., signal-to-noise ratio, gain 

prediction). The parametric sensitivity of the prediction 

filter is investigated in [27]. 

Robustness is another very important property of the 

system. The ability of the system to remain stable in the face 

of some disturbances or changes in certain parameters of the 

system is a very important characteristic in relation to the 

control system. There are different types of robustness, but 

in this paper, we consider parametric robustness. In contrast 

to sensitivity, here, we monitor the change in the system 

output in response to large parameter changes. The ability of 
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a system to remain stable despite certain disturbances is very 

important for any system. In the case of parametric 

robustness, which is studied in this paper, the system is 

robust in particular if it remains stable despite the change of 

parameters by a certain value (within certain limits).  

A robustness analysis of the predictors with respect to 

transmission error is carried out in [28]. Robustness for first- 

and second-order predictors has already been analysed in a 

previous paper [29]. In this paper, a generalisation of the 

ideal case is considered when the parameters are 

deterministic. Indeed, predictor coefficients are stochastic 

parameters, and we have performed a robust estimation, as 

we will do in this paper. Imperfections of any real system 

where we include probabilistic theory are discussed in many 

previous papers [29]–[33]. The aim is to know permanently 

for which values of the predictor coefficients the system is 

most robust, i.e., has the highest probability of robustness. 

The optimal choice of values for the predictor coefficients is 

of the utmost importance for better system performance. 

As in the case of stability, it becomes very tedious to 

compute multidimensional integrals when calculating 

higher-order system robustness. Therefore, we will apply the 

well-known Monte Carlo method to compute the complex 

integrals. In this paper, we investigate the robust stability of 

third- and fourth-order prediction filters. Of course, the 

same proposed method can also be used for higher-order 

systems. 

The problem is how best to define the limits of the 

parameters and what the values obtained later for the 

probability of robustness mean and how to use them to 

improve system performance. The idea of this paper is to 

complete the story of examining the properties of the DPCM 

prediction filter, which is crucial for the functioning of the 

entire DPCM system. This is a continuation of the 

previously conducted study on classical stability, stochastic 

stability, and sensitivity. 

The remainder of the paper is organised as follows. The 

system for differential pulse-code modulation with special 

emphasis on the linear prediction filter is described in 

Section II. Section III deals with the Monte Carlo method 

and the possibilities of its application in solving complex 

integrals for our purpose. The robustness stability of the 

linear prediction filters is discussed in Section IV. First, we 

verified the Monte Carlo method in cases of first- and 

second-order predictors where this method is not necessary, 

but we already have experimental results in a previous paper 

for comparison. Then, we applied the proposed method for 

the robustness estimation of third- and fourth-order 

prediction filters. We analysed the results of the series of 

experiments and made concluding remarks in Section V. 

Finally, some possible further research directions are 

indicated in Section VI. 

II. DPCM/ADPCM SYSTEM AND LINEAR PREDICTION 

Differential pulse-code modulation (DPCM) is a method 

of converting an analogue signal into a digital signal, in 

which the analogue signal is sampled, and then the 

difference between the actual measured value and its 

estimated value is quantised, and finally coded by forming 

its digital value. The estimation or prediction of the current 

value of the input signal is based on the knowledge of its 

previous values. If the input signal is redundant, its previous 

values are correlated with the current values, so a good 

assessment and economical operation of the DPCM system 

are possible. 

For nonstationary input signals, optimal results are 

achieved with the DPCM method, in which the prediction 

parameters change synchronously with the change in the 

statistical characteristic of the signal. Such prediction and 

quantisation techniques are called “adaptive prediction and 

adaptive quantisation”, and the corresponding modulation 

procedure is called “adaptive differential pulse-code 

modulation” (ADPCM) [1], [4], [16].  

The ADPCM encoder (Fig. 1(a)) consists of a quantiser, 

an inverse quantiser, a predictor and additional buffer, and a 

predictor coefficient estimator for adaptive prediction. As 

we can see, a predictive (recursive) filter is located both at 

transmission (in the encoder, Fig. 1(a)) and at reception (in 

the decoder, Fig. 1(b)). These predictive filters are of 

particular interest for further analysis, as they have already 

been used for stability analysis [24], [26]. 

 
Fig. 1.  Block scheme of the ADPCM system: (a) Encoder; (b) Decoder. 

The value of the linear prediction of the sample nx  can be 

written for the Nth order of the predictor in the form of the 

following sum 

 
1

ˆ ,
k

n i n i

i

x a y 



  (1) 

where ia  are the predictor coefficients [26]. As mentioned 

already, these coefficients have a decisive influence on the 

quality of the transmission, i.e., on the error that occurs 

during the evaluation. The correct selection of these 

coefficients depends on the accuracy of the estimation of the 

input sample value ( nx ), which in turn affects the 

quantisation error ne  and the prediction gain. A good 

estimate guarantees a lower amplitude dynamic of the 

difference signal nd  compared to .nx  This makes it possible 

to quantise the difference signal with a smaller number of 

amplitude levels, which means a saving in the bit rate, i.e., 

the prediction gain. On the other hand, if the prediction 

coefficients are poorly chosen, the difference signal can 

become larger than the input sample, resulting in a larger 

quantisation error and multiplying the total error due to the 

feedback loop, which can ultimately lead to system failure. 
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This is the reason why we consider the parametric robust 

stability of this system.  

The kth-order predictor model (1) in z-domain is 

        
^

1

,
k

i

i P

i

X z a z Y z W z Y z



 
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 
  (2) 

where the transfer function of the predictor is 

  
1

.
k

i
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i

W z a z



  (3) 

The transfer functions of the prediction filter in the 

encoder and decoder (Fig. 1) have the following forms, 

respectively: 
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Finally, the characteristic equation for both filters is given 

by 

 
1

0.
k

k k i

i

i

z a z 



   (6) 

III. THE MONTE CARLO METHOD 

A. Brief Survey of the Monte Carlo Method 

The Monte Carlo method allows for the approximate 

numerical solution of a wide range of different problems by 

performing statistical experiments with the help of the 

computer. This method is particularly useful for solving 

mathematical problems that are too complex to be solved 

analytically [34], [35]. Incidentally, the term itself was 

created in the late 1940s at Los Alamos National Laboratory 

during the development of the atomic bomb [34]. The 

development of this method coincides with the advent of the 

first computers, which significantly accelerated iterative 

numerical calculations. This method is still popular and 

irreplaceable in various areas of research [36]. 

B. Application of the Monte Carlo Method in Robustness 

Analysis of High-Order Prediction Filters 

In this paper, we will use the Monte Carlo method for the 

numerical approximation of multiple definite integrals 

whose values are very difficult to determine with classical 

integration, especially for larger dimensions. In some cases, 

it is very difficult to determine the integration limits and 

thus to solve the integrals, so that approximation methods 

are required. With Monte Carlo integration, we can obtain 

numerical solutions for the required integrals of arbitrary 

dimensions with the required accuracy. A similar method 

has already been used in [26] to calculate the probability of 

stability for a higher-order predictor. 

In this paper, we will first use the Monte Carlo method to 

verify the results we have already obtained by classical 

integration. This verification was, of course, carried out in 

the form of a series of simulation experiments for second-

order predictors. Then, the proposed and tested Monte Carlo 

method is applied to estimate the robustness stability of 

prediction filters of higher orders, where classical 

integration becomes practically impossible, especially 

considering that the parameters are stochastic variables in 

the general case. The random number generator is used to 

obtain the values of the predictor coefficients that are 

normally distributed around the nominal value. Experiments 

are performed for a different number of samples until a 

satisfactory accuracy is achieved. The method is very good 

because we avoid integration over the stability area [37], but 

only need the boundaries of that area. The robustness 

probability is calculated as the quotient between the number 

of favourable cases (samples belonging to the stability area) 

and the total number of samples. 

In the general case of the kth-order predictor ( 3k  ), the 

robustness stability can be determined by solving 

multidimensional probability integrals [32]. However, the 

calculation is very complex. The boundaries of the stability 

area are usually complex mathematical expressions and it 

becomes very difficult to determine the robustness because 

one has to integrate the stability area [38]. For this reason, 

we will evaluate the probability of robustness using the 

Monte Carlo method. 

For this purpose, we will use the Schur-Cohn stability 

criterion [39]. We have adjusted the coefficients in the 

Schur-Cohn determinant [40] to the characteristic equation 

(6). The corresponding determinant now has the following 

form 
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 (7)

 

where i  is the order of the determinant 1,2,3,..., .i k  The 

system is stable if and only if 0i   for even values ,i  and 

0i   for odd values .i  

It should be noted that the stability area for the second 

order was determined by the Routh-Hurwitz criterion in 

earlier papers [29], [31]. In [38], the following system of 

equations defining the stability area was obtained using the 

same criterion, which is also adapted here to (6) and with 

negative signs in front of the coefficients as in the case of 

Schur-Cohn 

 
2

1 2 3 1 2 3 1 3 2 31, 1, 1 .a a a a a a a a a a            (8) 
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IV. THE ROBUSTNESS STABILITY ANALYSIS OF THE DPCM 

PREDICTION FILTER 

Regarding the DPCM system and the linear prediction 

filter it contains, an analysis of the robustness of the 

predictor to transmission error has already been discussed in 

[29], as we said before. As far as parametric robustness is 

considered, the most important one is related to system 

stability. A system is said to be robust (in the classical 

sense) to parameter changes if it remains stable when the 

parameters change within a certain range. In this paper, we 

deal with parametric robustness in terms of the predictor 

coefficients. As discussed in [24] and [41], the quantiser has 

a nonlinear characteristic (with saturation), so it stabilises 

the whole system and the prediction filter is crucial for 

stability and robustness. Robustness analysis for predictors 

of first and second order has already been performed in [29], 

where a classical integration was performed to calculate the 

probability of robustness. In this paper, we will consider the 

robust stability of the higher-order prediction filter. We use 

the well-known Kharitonov principle for parametric 

robustness estimation [42], [43] and the Monte Carlo 

method to compute complex integrals. We will perform a 

robustness analysis for the third- and fourth-order prediction 

filters and verify the Monte Carlo method for the lower-

order prediction filter before that. 

A. Verification of the Monte Carlo Method for the 

Second-Order Prediction Filter 

As mentioned above, we will first verify the proposed 

Monte Carlo method for the robustness already computed 

using classical integration for the second-order predictors 

[29]. We will perform a series of experiments for a different 

number of samples (trials) in the Monte Carlo simulation. 

Specifically, we did this for 10,000, 100,000, 1,000,000, and 

10,000,000 samples and repeated the experiment three times 

for each of the samples. The results are shown in Table I. It 

can be seen that, as expected, the robustness value obtained 

with an approximation method such as Monte Carlo 

approaches the value obtained with classical integration as 

the number of samples increases. Satisfactory accuracy to 

three decimal places by rounding has already been achieved 

for 1,000,000 samples. It is possible to perform a more 

detailed analysis of the error [37], as well as the time needed 

to perform the Monte Carlo simulation experiment by 

increasing the number of samples, but this is not necessary 

for our further analysis and considering the nature of our 

problem. In this regard, the given number of samples of 

1,000,000 is quite sufficient, so further experiments for 

higher-order predictors will be performed with this number 

of trials. 

TABLE I. THE ROBUSTNESS ESTIMATION FOR THE SECOND-

ORDER PREDICTION FILTER USING CLASSICAL INTEGRATION 

AND MONTE CARLO METHOD. 

Methods Trials 

Monte Carlo 

104 105 106 107 

0.9583 0.9612 0.9615 0.9617 

0.9621 0.9615 0.9615 0.9617 

0.9627 0.9611 0.9617 0.9617 

Traditional 0.961687 

B. The Robustness of the Third-Order Prediction Filter 

The characteristic equation (6) of the third-order 

prediction filter has the following form 

 
3 2

1 2 3 0.z a z a z a     (9) 

If we want to adapt the form to the original Kharitonov 

polynomials [43], (9) can be written as 

 
3 * 2 * *

1 2 3 0,z a z a z a     (10) 

where 
*

1 1,a a   *

2 2 ,a a   and *

3 3a a   because now 

negative signs are included in the coefficients, which 

reverses the lower and upper bounds. However, it does not 

change the results and conclusions that we will show. 

The set (family) of four characteristic polynomials 

according to Kharitonov’s Theorem [43] is now (in our case, 

all coefficients are real numbers, so the original system of 

eight polynomials is reduced to four, leaving minus signs to 

preserve the idea of physical predictor coefficients): 

   3 2

1 1 2 3 ,R z z a z a z a     (11) 

   3 2

2 1 2 3 ,R z z a z a z a     (12) 

   3 2

3 1 2 3 ,R z z a z a z a     (13) 

   3 2

4 1 2 3.R z z a z a z a     (14) 

If we omit the negative signs, 

  * 3 * 2 * *

1 1 2 3 ,R z z a z a z a     (15) 

  * 3 * 2 * *

2 1 2 3 ,R z z a z a z a     (16) 

  * 3 * 2 * *

3 1 2 3 ,R z z a z a z a     (17) 

  * 3 * 2 * *

4 1 2 3 .R z z a z a z a     (18) 

It can be stated that    *

1 3 ,R z R z     *

2 4 ,R z R z  

   *

3 1 ,R z R z  and    *

4 2 .R z R z  Although 

Kharitonov’s polynomials do not cover all cases (four 

polynomials, and there are eight combinations), the 

aforementioned negative sign will not affect the overall 

probability of robustness due to symmetry. 

The stability area, S3 for the third-order predictor in the 

parametric plane  1 2 3, ,a a a  is determined by the conditions 

of (8) or directly from (7) for k = 3. 

A sufficient condition for robust stability is that the sets 

of coefficients in all four polynomials (11)–(14) fulfill (7), 

(8). However, the predictor coefficients are stochastic 

variables. This is a much more stringent requirement than 

that the nominal values of the predictor coefficients or 

values around them satisfy these inequalities, as was 

required for ordinary stability. 

In the experiment, to obtain predictor coefficients for the 

third- and fourth-order ADPCM systems, a recorded speech 

signal with a length of 12000 samples and a sampling 

frequency of 8 KHz was fed to the input of this system. 

During processing, the signal is divided into frames of 

length M and the predictor coefficients (a1, a2, a3, ...) are 

calculated for each frame. The predictor coefficients are 
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determined from the correlation coefficients using the 

Levinson-Durbin algorithm [2]. After calculating all 

predictor coefficients for all signal frames, their means a1m, 

a2m, a3m, ... and standard deviation σ1, σ2, σ3, ... were 

calculated. Therefore, the ADPCM method was used to 

form a set of values of the predictor coefficients (a1, a2, a3, 

...) on the basis of which their means were obtained, which 

are further used in the analysis as predictor coefficients of 

the DPCM system. The experiment was repeated for 

different frame lengths M, and these values are listed in 

Tables II and III for the third- and fourth-order predictors, 

respectively. The analysed values of the parameter M are the 

most commonly used values in practice. Indeed, a decrease 

in the value of the M parameter means an increase in the 

total secondary information to be transmitted to the receiver 

of the system. With extremely small values of M, the 

amount of secondary information becomes comparable to 

the basic information and significantly affects the 

performance of the system. An increase in the value of M 

means an increase in the probability that samples with 

different statistical characteristics (both small- and large-

amplitude dynamics) will be included in the frame, so that a 

good adaptation of the system parameters (such as the 

quantiser range) cannot be achieved. As a result, the quality 

of signal processing decreases. Furthermore, an increase in 

the value of the parameter M means an increase in the delay 

of the signal if the signal is processed and transmitted in real 

time. 

The values obtained for the mean and standard deviation 

of the third-order predictor coefficients are shown in Table 

II. 

TABLE II. THE MEANS AND STANDARD DEVIATIONS OF THE 

THIRD-ORDER PREDICTOR COEFFICIENTS FOR DIFFERENT 

VALUES OF M. 

M [sample] 10 20 50 100 150 200 

a1m 0.980 1.133 1.320 1.452 1.510 1.529 

σ1 0.240 0.251 0.252 0.243 0.260 0.250 

a2m -0.190 -0.287 -0.464 -0.640 -0.718 -0.763 

σ2 0.276 0.338 0.384 0.390 0.410 0.378 

a3m -0.036 -0.001 0.039 0.101 0.126 0.152 

σ3 0.157 0.182 0.190 0.199 0.205 0.192 

 

From Table II, we can conclude that the predictor 

coefficient has a maximum value for 200M   and a 

minimum value for 10M   (for the coefficient 
*

1 ,a  the 

conclusion is reversed). Similarly, the coefficient 2a  has a 

maximum value for 10M   and a minimum value for 

200.M   Finally, the coefficient 3a  has a maximum value 

for 200M   and a minimum value for 10.M   This means 

that, in accordance with the introduced notation, 
*

1 1 1.529,m ma a    *

1 1 0.980,m ma a    *

2 2m ma a  

0.190,   *

2 2 0.763,m ma a     *

3 3 0.152,m ma a    and 

*

3 3 0.036.m ma a     

The corresponding probability density function (PDF) for 

the polynomial 1R ( *

3R ) is 
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( , , )

2 2 2
f a a a

     
   

 

222

2 2 3 31 1

2 31

1
exp ,

2

m mm
a a a aa a

 

                     
        

 (19) 

where ima  ( 1,2,3i  ) and i  ( 1,2,3i  ) are the means and 

standard deviations, respectively, for the maximum value of 

the coefficients ia ( ia ) ( 1,2,3i  ), while ima  ( 1,2,3i  ) 

and i  ( 1,2,3i  ) are the means and standard deviations for 

the minimum value of the coefficients ia ( ia ), ( 1,2,3)i  . 

The probability density functions for the other three 

polynomials  2 1 2 3: , , ,R f a a a   3 1 2 3: , , ,R f a a a  and 

 4 1 2 3: , ,R f a a a  can be derived in the same way.  

We can now perform robust stability estimation. For the 

polynomial 1,R  we obtain 

 

3

3

1 2 3 1 2 3

1

* * *

1 2 3 1 2 3

1 1 2 3 1 2 3

( , , )

( , , )

( , , ) .

S

S

f a a a da da da

P

f a a a da da d a

P f a a a da da da

  

  







  



 (20) 

Remark 1: The integral in the denominators (20) 

represents the total probability and its value is 1. 

Accordingly, the relations for the robustness probability 

of the other three characteristic polynomials have the 

following forms: 

  
3

2 1 2 3 1 2 3, , ,
S

P f a a a da da da   (21) 

  
3

3 1 2 3 1 2 3, , ,
S

P f a a a da da da   (22) 

  
3

4 1 2 3 1 2 3, , ,
S

P f a a a da da da   (23) 

where S3 is defined by (8) or by the general conditions (7) 

for k = 3.  

Remark 2: It should be emphasized that the probability P1 

actually refers to the polynomial R3 and not to *

1R  since the 

integration areas as well as the Schur-Cohn criterion are 

adapted to the characteristic equation (9), i.e., to negative 

coefficients. Following the same logic, P2 corresponds to the 

polynomial R4, P3 to R1, and P4 to R2. 

Since, as mentioned, it is difficult to calculate integrals 

(20)–(23) already for the third order, we use the Monte 

Carlo method with a given number of samples of 1,000,000. 

In this way, we can calculate the corresponding values for 

the robustness probability: 1 0.362,P   2 0.201,P   

3 0.552,P   and 4 0.693.P   

The total robustness for the third-order prediction filter is 

 
4

1

0.028.i

i

P P


   (24) 

We can see that the probability of robustness is quite low 
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(about 3 %). In the classical sense, this third-order 

prediction filter is not robustly stable. Indeed, three of the 

four polynomials are stable in the classical sense, but one of 

the Kharitonov polynomials is not, i.e., it does not meet the 

conditions (7), (8) (the previously computed probability for 

this polynomial is 2 0.201P  ). Therefore, the polynomial 

R1 would be stable in the deterministic case, even if only 

with a probability of 0.362. 

The robustness analysis presented here is a generalisation 

of the classical robustness approach. In the deterministic 

case ( 0  ), we obtain robustness probability values equal 

to 1 (100 %) (stable in terms of robustness) or 0 (unstable). 

In the case of the third-order predictor, the total robustness 

is 0, since the values of the predictor coefficients in the 

polynomial R2 do not meet the conditions (7), (8), so the 

corresponding probability is small (24). 

C. The Robustness of the Fourth-Order Prediction Filter 

The characteristic equation (6) for the fourth-order 

prediction filter has the following form 

 
4 3 2

1 2 3 4 0.z a z a z a z a      (25) 

In agreement with the discussion for the third-order 

predictor, (25) can be written as follows 

 4 * 3 * 2 *

1 2 3 4 0,z a z a z a z a      (26) 

where 
*

1 1,a a   *

2 2 ,a a   *

3 3 ,a a   and 
*

4 4.a a   

The set of four characteristic polynomials assumed for the 

fourth-order prediction filter according to Kharitonov’s 

theorem is now 

   4 3 2

1 1 2 3 4 ,R z z a z a z a z a      (27) 

   4 3 2

2 1 2 3 4 ,R z z a z a z a z a      (28) 

   4 3 2

3 1 2 3 4 ,R z z a z a z a z a      (29) 

   4 3 2

4 1 2 3 4 .R z z a z a z a z a      (30) 

For the case of the third-order predictor, we have already 

explained what form the corresponding Kharitonov 

polynomials would take if the set of coefficients 

 * * * *

1 2 3 4, , ,a a a a  were used. A sufficient condition for 

robust stability is that the sets of coefficients in all four 

polynomials (27)–(30) meet the Schur-Cohn criterion (7). 

Experiments were performed with the same speech signal 

sample and repeated for the same frame lengths as for the 

third-order predictor. The values obtained for the mean and 

standard deviation of the predictor coefficients are listed in 

Table III. 

Following the same principle as for the third-order 

predictors, we obtain the following: 1 1.572,ma   

1 0.977,ma   2 0.941,ma    2 0.202,ma    3 0.493,ma   

3 0.037,ma   4 0.075,ma    and 4 0.227.ma    

The corresponding probability density function for the 

polynomial 1R  is 

1 2 3 4

1 2 3 4

2 22 2

3 3 4 41 1 2 2

3 41 2

1 1 1 1
( , , , )

2 2 2 2

1
exp ,

2

m mm m

f a a a a

a a a aa a a a

       

  

 

                              
         

 (31) 

where ima  ( 1,2,3,4i  ) and i  ( 1,2,3,4i  ) are the means 

and the standard deviations for the maximum value of the 

coefficients ai( ia ) ( 1,2,3,4i  ), while ima  ( 1,2,3,4i  ) 

and i  ( 1,2,3,4i  ) are the means and the standard 

deviations for the minimum value of the coefficients ai( ia ), 

respectively. We can derive the probability density functions 

for the other three polynomials,  2 1 2 3 4: , , , ,R f a a a a  

 3 1 2 3 4: , , , ,R f a a a a  and  4 1 2 3 4: , , , ,R f a a a a  in the same 

way. 

TABLE III. THE MEANS AND STANDARD DEVIATIONS OF THE 

FOURTH-ORDER PREDICTOR COEFFICIENTS FOR DIFFERENT 

VALUES OF M. 

M 

[sample] 
10 20 50 100 150 200 

a1m 0.977 1.136 1.335 1.479 1.540 1.572 

σ1 0.248 0.260 0.280 0.264 0.275 0.266 

a2m -0.202 -0.316 -0.546 -0.770 -0.860 -0.941 

σ2 0.312 0.395 0.507 0.499 0.507 0.493 

a3m 0.037 0.108 0.231 0.374 0.430 0.493 

σ3 0.214 0.274 0.373 0.364 0.388 0.372 

a4m -0.075 -0.096 -0.140 -0.190 -0.210 -0.227 

σ4 0.133 0.142 0.172 0.168 0.193 0.176 

 

Now it would be even more difficult to calculate the 

following probability of robust stability for the characteristic 

polynomials R1 to R4 by classical integration: 

 

4

1 1 2 3 4 1 2 3 4( , , , ) ,
S

P f a a a a da da da da    (32) 

  
4

2 1 2 3 4 1 2 3 4, , , ,
S

P f a a a a da da da da    (33) 

  
4

3 1 2 3 4 1 2 3 4, , , ,
S

P f a a a a da da da da    (34) 

  
4

4 1 2 3 4 1 2 3 4, , , ,
S

P f a a a a da da da da    (35) 

where S4 is the stability area for the fourth-order prediction 

filter described by (7) for k = 4. 

Finally, we can compute the corresponding robustness 

probability values using the Monte Carlo method for the 

same number of samples: 1 0.119,P   2 0.416,P   

3 0.449,P   and 4 0.220.P   

The total robustness for the fourth-order prediction filter 

is 

 
4

1

0.005.i

i

P P


   (36) 

We can see that the total robustness is even lower than in 

the case of the third-order predictor (about 0.5 %). As in the 

previous case, this fourth-order prediction filter is not 
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robustly stable in the classical sense. Now even three of the 

four polynomials are not stable in the classical sense, only 

one of the Kharitonov polynomials is stable ( 3 0.449P  ), so 

the system would also be robustly unstable in the classical 

sense in this way. It is interesting to note that for the fourth 

order, the probability of 0.449 corresponds to a stable 

system in the ideal case ( 0  ) and already to an unstable 

one of 0.416. For the third-order predictor, a probability of 

0.362 was sufficient for stability under the same 

hypothetical conditions. Therefore, one should not be 

surprised at the small probabilities obtained for total 

robustness. And if all four polynomials are stable in the 

classical sense, the total robustness can often only be of the 

order of 1 %. We note that similar conclusions have already 

been obtained in a study of second-order predictors [29]. 

There, one of the four polynomials was unstable in the 

classical sense, and the total probability was also quite low. 

D. A Different Approach to Robustness Analysis - The 

Case Study of the Third-Order Prediction Filter for the 

Fixed Frame Length 

From all this, it can be concluded that this was a too 

stretchy and crude definition of parametric robustness 

estimation because the differences between the lower and 

upper bounds for the same predictor coefficients are 

enormous, considering that the analysis was performed with 

a wide range of frame lengths. Each set value of the 

predictor coefficient satisfies (7) and the probabilities of 

stability are high, which was also shown in [26]. For 

example, for M = 100 in the case of the third-order 

predictor, we have examined classical stability for each 

frame and the set of three coefficients a1, a2, a3 always 

belongs to the area S3, i.e., to the system of inequalities (7), 

(8). However, if Kharitonov’s Theorem was applied, all 

polynomials would be unstable in the classical sense, again 

due to the large differences in coefficients for a given 

frames (Fig. 2). This is a key point of robust stability. The 

stable system hardly remains stable if the system parameters 

are changed to their limits. 

 
Fig. 2.  Values of predictor coefficients a1, a2, and a3 for each frame from 1 

to 100. 

Statistic was generated (the column for M = 100 in Table 

II) based on these values, as well as for all other values from 

Tables II and III. The corresponding distributions of the 

predictor coefficients and the normal (Gaussian) distribution 

with the same means and standard deviations are shown in 

Fig. 3 for illustration purpose.  

According to the proposed approach, we can therefore 

perform experiments and later appropriate robustness 

analysis for each frame length (10, 20, 50, 100, 150, 200) 

and for the third- and fourth-order predictors, but due to the 

scope of the work, we will focus on the length frame M = 

100 already considered and give corresponding conclusions 

that are also valid for other M and predictor orders. 

 
             (a) 

 
             (b) 

 
             (c) 

Fig. 3.  PDF of the predictor coefficients (a) a1, (b) a2, and (c) a3, 

respectively (for M = 100). 

Then a series of repeated experiments was performed for 

the same predictor (in this case study, third order) and the 

same frame lengths (M = 100 here). Thus, the limits for the 

coefficients were determined in a completely different way. 
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Since we have a large agreement, the difference between the 

same coefficients is very small (on average at the third 

decimal place). In this way, there are now small differences 

between the lower and upper bounds of the same coefficient 

in Kharitonov’s polynomials, which was not the case in the 

previous analysis when we chose the bounds based on the 

length of the frame. This is very close to the stability 

analysis performed in [26], i.e., we have similar 

probabilities of robustness for each individual polynomial. 

In the classical sense, they are all stable, and the 

probabilities are high as before. However, considering that 

for the total robustness the probabilities for R1 to R4 are 

multiplied, the values are not large. As an example, again 

we have only presented the values for M = 100 for the third-

order predictor already mentioned (Table IV). 

TABLE IV. THE MEANS AND STANDARD DEVIATIONS OF THE 

THIRD-ORDER PREDICTOR COEFFICIENTS FOR THE FIXED 

FRAME LENGTH (M = 100). 

No. 

experiments 
1 2 3 4 5 

a1m 1.452 1.444 1.447 1.453 1.443 

σ1 0.243 0.254 0.248 0.241 0.256 

a2m -0.640 -0.635 -0.638 -0.641 -0.634 

σ2 0.390 0.392 0.391 0.388 0.395 

a3m 0.101 0.103 0.102 0.100 0.104 

σ3 0.199 0.199 0.198 0.197 0.200 

 

Using the same principle as for robustness over the entire 

range of frame lengths, we obtain the following: 

1 1.453,ma   1 1.443,ma   2 0.634,ma    2 0.641,ma    

3 0.104,ma   and 3 0.100.ma   Using the same method and 

with the same number of trials in the Monte Carlo 

simulation, we obtain the following results for the individual 

robustness probabilities of Kharitonov’s polynomials: P1 = 

0.411, P2 = 0.405, P3 = 0.410, P4 = 0.416, and finally the 

total robustness: P = 0.028. Each of the above probabilities 

is roughly equivalent to those calculated in [26] for M = 

100, but the total probability is again extremely small, as in 

the study for variable frame length, as we have assumed. In 

the classical sense, all four polynomials are stable, but in 

stochastic analysis, the combination of predictor coefficient 

values that is polynomial in R4 gives the best results. Of 

course, this is a fine-tuning, as the differences are not as 

drastic as in the method that includes all values of the frame 

length in the same estimation. 

This concludes the study on the stability, probability of 

stability, and robustness of the DPCM prediction filter, 

which was conducted in the previous research period.  

V. CONCLUSIONS 

In this paper, the robust stability of higher-order DPCM 

prediction filters is analysed. The experiments were 

performed for a given speech signal and experimentally 

determined values for the predictor coefficients for the third 

and fourth orders of the system. Due to the complexity of 

the classical calculation of integrals, the Monte Carlo 

method was used to solve complex integrals. It is possible to 

apply the proposed method very efficiently for higher-order 

predictors. The error problem in Monte Carlo integration is 

solved by increasing the number of samples until the desired 

accuracy is achieved. In contrast to the analysis for the 

lower-order predictors and the same one for the higher-order 

predictors here, this paper also proposed a different 

approach to determine the limit values of the predictor 

coefficients in a much finer way. The obtained values for the 

probability of robustness are important for the system 

design, i.e., the choice of the optimal values of the predictor 

coefficients. With larger values for the probability, the 

system has a greater chance of remaining stable and better 

performances, and the speech coding is much more efficient. 

Finally, there is the possibility of fine-tuning the values of 

the predictor coefficients, keeping in mind that the 

parametric sensitivity of the same has been studied in 

previous papers. 

VI. FUTURE WORK 

It is also possible to generalise this analysis to the entire 

DPCM system, whereby the derived conclusions regarding 

robust stability can be transferred to this system in many 

respects. The influence of the quantiser has already been 

explained in some previous work, but can certainly be 

included in the analysis.  

This method can be applied in the same way for 

predictors higher than order four. One can go deeper into 

analysis of the Monte Carlo simulation error as well as the 

duration of the simulation, and thus find an optimum 

between these two conflicting parameters. 

A correlation can be established between the probability 

of robustness and some parameters important for the 

performance of the system, such as the signal-to-noise ratio 

or the prediction gain, and a more detailed analysis is 

possible, as in stability-related analyses [25]. 

This paper is a basis for further analysis of the whole 

DPCM system, but also for further research on the 

application of this theory in the field of machine learning, 

artificial intelligence, and deep neural networks, where the 

main goal is prediction. 
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