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1Abstract—In this article, a novel technique is proposed, 

namely rank-based multi-objective antlion optimization 

(RMOALO), and applied to optimize the performance of the 

energy harvesting cognitive radio network (EHCRN). The 

original selection method in multi-objective antlion optimizer 

(MOALO) is suitably changed to improve the algorithm, thus 

reaching the optimal solution for the problem. The proposed 

technique shows considerable performance improvement over 

the method used in the multi-objective antlion optimizer 

(MOALO). The performance of the proposed RMOALO is 

demonstrated on five benchmark mathematical functions and 

compared to multi-objective particle swarm optimization 

(MOPSO), multi-objective moth flame optimization 

(MOMFO), MOALO-Tournament, and MOALO-Roulette. 

The simulation results show an improved convergence of 

RMOALO and find the optimal solution to the throughput 

maximization problem. We show that RMOALO provides 

16.33 % improved average throughput with the optimal value 

of sensing duration for the varying amount of harvested energy 

compared to MOPSO, MOMFO, MOALO-Roulette, and 

MOALO-Tournament. 

 
 Index Terms—Cognitive radio; Energy harvesting; 

Metaheuristic optimization; MOALO; Spectrum sensing. 

I. INTRODUCTION 

The demand and popularity of efficient wireless networks 

have increased over the past decade. Cognitive radio (CR) 

has been shown to be an emerging technology in wireless 

networks [1]. Cognitive radios are battery-operated with a 

limited network lifetime [2], [3]. With the advent of new 

devices, the efficient use of spectrum and energy has 

become a concern for most researchers. Energy harvesting is 

a promising addition to cognitive radio networks (CRN) to 

save energy and maximize throughput in next-generation 

wireless networks [4]. Energy harvesting is achieved from 

different energy sources in an energy harvesting cognitive 

radio network (EHCRN). The sources of energy in [5] are 

ambient such as solar, wind, motion, etc. from where the 

energy is harvested. The cognitive radio system uses 

ambient energy sources in [6], [7]. The RF (radio frequency) 

signal utilized by the secondary network acts as a source 

depending on the state of the channel in [8]. 

To meet the aforementioned challenges, optimization of 
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the parameters that affect the performance of the energy 

harvesting cognitive radio network is considered [9]. To 

efficiently utilize the energy harvesting from the primary 

transmitter (PT), both energy harvesting and information 

transfer can be accomplished using the separated spectrum 

sensing and energy harvesting scheme (SSSEH). It can 

improve wireless network throughput, sensing time, and 

reduce the risk of collision between the primary transmitter 

and the primary receiver. 

II. RELATED WORKS 

For the EHCRN in [10], the average throughput of the 

secondary network is maximized by an optimal pairing of 

the sensing duration and the energy detector sensing 

threshold. In [11], a hidden Markov model describes the 

imperfect spectrum sensing process. The network obtains 

the optimal solution while adapting its parameters based on 

quality of service (QoS) requirements [12]. Some previous 

works have maximized throughput by optimizing resource 

allocation between primary and secondary users [13]. To 

maximize the throughput of the secondary user, optimal 

spectrum sensing energy, the transmit energy, and spectrum 

sensing interval Markov decision process (MDP) framework 

is used in [14]. In [15], optimized sensing time is achieved 

to improve the throughput in CR with a trade-off between 

the two. The optimization problem solved in [16] with the 

energy constraint and the collision constraint maximizes the 

total throughput of the secondary network in which the 

ambient source has been used for harvesting. Optimization 

of sensing threshold and sensing duration jointly for 

throughput maximization of a CRN is studied in [17]. The 

throughput of CRN is maximized by maintaining a proper 

trade-off between the harvested energy and the transmission 

of data with an optimal transmission time for primary and 

secondary users in [18]. In [19], the harvesting interval and 

the transmission interval are optimized to maximize the total 

achievable throughput of cognitive radio networks to obtain 

the maximum total achievable throughput. The sensing 

interval problem of the idle and busy channels in the EH-

based CR network was formulated in [20]. A Markov chain 

was developed to find the energy state transition probability 

to solve the energy wastage problem. 

From the literature, it is seen that spectrum sensing 
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optimization has been extensively studied, and most of the 

researchers emphasized optimizing the trade-off for 

spectrum sensing and throughput in EHCRN by solving it as 

a convex optimization problem [18]–[20].  

Despite the advances mentioned above, there is still a 

trade-off between throughput and sensing in EHCRN with 

constraints on interference and energy [21]. For example, 

the CR needs to sense the spectrum with the minimum 

energy in less time to get overall maximum throughput. 

These problems are solved using classical optimization 

techniques. These existing optimization methods incorporate 

high complexity if the problem has a trade-off and multiple 

parameters to be handled simultaneously. Constrained 

optimization problems are more challenging to solve than 

unconstrained optimization. Such constraints and trade-offs 

can be dealt with using metaheuristic-based multi-objective 

optimization, as it provides an optimal solution by 

optimizing two or more objectives simultaneously. 

Moreover, these techniques offer faster convergence and 

provide global solutions efficiently. Although in the 

literature [22], the issues of efficient resource utilization are 

solved using dynamic programming or mixed-integer non-

linear programming (MNLP) but with a high computational 

cost. 

For cognitive radio network (CRN), up to the authors 

knowledge, metaheuristic-based multi-objective 

optimization methods have been used in related topics in 

[23]–[25] and have given satisfactory results, but we are not 

sure about separated spectrum sensing and energy 

harvesting scenario (SSSEH) in energy harvesting cognitive 

radio networks where energy harvesting and spectrum 

sensing occur separately in particular. Motivated by the 

works mentioned above, the focus of our work is to improve 

the performance of an energy harvesting cognitive radio 

network with the maximum throughput requirement while 

satisfying energy and interference constraints. This is 

achieved by multi-objective optimization of the EHCRN 

using the proposed novel metaheuristic technique. 

Constrained optimization can be a great solution to existing 

spectrum and energy problems. Analytical expressions for 

throughput and energy ratio are developed under the 

separated spectrum sensing and energy harvesting (SSSEH) 

scenario. The performance comparison of throughput under 

parameters similar to the baseline technique proposed in 

[26] is made. The impact of interference, signal-to-noise 

ratio (SNR), and harvested energy on throughput is also 

studied.  

We have implemented the optimization problem of 

throughput maximization using multi-objective particle 

swarm optimization (MOPSO) [27], multi-objective moth 

flame optimization (MOMFO) [28], multi-objective antlion 

optimization (MOALO)-Roulette and MAOLO-Tournament 

[29] in the separated spectrum sensing and energy 

harvesting (SSSEH) scenario. These optimization 

techniques lack the proper trade-off between their 

intensification and diversification processes and get stuck to 

the best local solution. 

Thus, we propose a rank-based multi-objective antlion 

optimization algorithm (RMOALO), which can prevent the 

solution from getting stuck in the local optimum to find the 

global optimal sensing time, maximizing the average 

throughput. Additionally, RMOALO is tested for various 

benchmark functions to validate its effectiveness. Apart 

from this, the performance comparison of the proposed 

algorithm with other metaheuristic algorithms shows that 

RMOALO outperforms in reaching the optimal solution. 

The comparison helps to find the best suitable algorithm for 

the given problem. The key contributions of this research 

work are summarized as follows:  

1. Formulation of throughput maximization as a non-

convex optimization problem using the novel fitness 

function for average throughput in separated spectrum 

sensing and energy harvesting (SSSEH) scenario. 

2. An improved rank-based multi-objective metaheuristic 

optimization algorithm is proposed and used to find an 

efficient global solution. The benchmarking of the 

proposed algorithm with the state-of-the-art metaheuristic 

algorithms is also done. 

3. The simulated results compared with the conventional 

scheme demonstrate that the proposed metaheuristic 

algorithm substantially increases the throughput of the 

secondary transmitter (ST).  

The rest of the paper is organized as follows. Section III 

introduces the system model of the separated spectrum 

sensing and energy harvesting scheme (SSSEH) in EHCRN. 

For the network’s maximum throughput demand, the multi-

objective optimization problem for throughput maximization 

is formulated in Section IV. A novel multi-objective 

algorithm is proposed to obtain the optimal sensing duration 

in Section V. Section VI presents the simulated results and 

discussions. Section VII concludes the paper and presents 

future work. 

III. SYSTEM MODEL 

The system model of CR equipped with wireless energy 

harvesting for separated spectrum sensing and energy 

harvesting (SSSEH) is illustrated in Fig. 1.  

 
Fig. 1.  Energy harvesting cognitive radio system for separated energy 

harvesting and spectrum sensing. 

It consists of a primary and secondary network. The 

primary network consists of the primary transmitter-receiver 

pair and the secondary network consists of a secondary 

transmitter-receiver pair. The secondary transmitter (ST) is 

equipped with an RF energy harvester consisting of a 

rectifier unit and a rechargeable battery. The ST uses 

harvest-store-use for guaranteed QoS [30]. The primary 

network uses a licensed spectrum and has a fixed power 

source. Primary transmitter and receiver use synchronous 

slotted communication with the duration of the slot “T”. The 
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secondary network is not licensed to use the spectrum, but 

opportunistically accesses the licensed user’s spectrum 

depending upon the availability of the primary user. The ST 

senses the spectrum periodically according to the spectrum 

state of (H0 or H1) to harvest energy, signal sensing, and 

data transmission. H0 gives the primary receiver state as an 

idle spectrum state and H1 as an occupied spectrum state. 

The frame structure of SSSEH is illustrated using Fig. 2 

[31].  

1. Energy harvesting: In the interval (0, 𝞽1), if the primary 

transmitter is present, the energy harvester at the ST 

harvests from the RF signal of PT. The energy harvested 

is stored in the battery for future use. If the primary 

transmitter is absent, the energy harvester at ST stops as 

no RF signal will be present. In the absence of PT, 

harvesting is not done. The secondary transmitter is OFF 

during this time interval, i.e., there is no transmission in 

this phase. The ST works in the next phase using the 

stored energy, as there will be no RF energy due to the 

absence of PT. 

2. Spectrum sensing: In the time slot (𝞽1, 𝞽2), the energy 

harvester at the secondary transmitter stops harvesting 

and senses the spectrum. Spectrum sensing is performed 

with the energy of the storage device. 
3. Data transmission: In the time slot (T - 𝞽1- 𝞽2), if the 

primary user is not detected, the sensing stops, and the 

data transmission occurs using the stored energy. During 

the data transmission slot, it becomes crucial to avoid 

collisions due to traffic between the primary transmitter-

receiver pair. So, the energy and collision constraints are 

considered. 

TABLE I. PRINCIPAL SYMBOLS’ GLOSSARY. 

τ1 Energy harvesting time σ2
w Noise Variance 

τ2 Sensing duration σ2
p Signal Variance 

T Total frame period Pnc 

Probability of 

signal transmission 

without collision 

S(m) Primary transmitter signal Pc 

Probability of 

signal transmission 

with collision 

W(m) Noise signal Rs 

Average 

throughput at 

secondary 

Ph Energy arrival Rate Ptc 
Target Collison 

probability 

Eh 
Average energy harvested 

at harvester 
Est 

Average energy at 

secondary 

Es 

Energy consumed for 

sensing by secondary 

transmitter 

Ps Sensing probability 

es Sensing power lb Lower Bound 

Et 

Energy consumed for 

transmission at the 

secondary transmitter 

ub Upper Bound 

et Data Transmit power i 
Number of 

iterations 

θn 
Channel status 

idle/occupied 
t

iAnt   
The fitness value of 

the ant (i - position 

with t - iteration) 

Ec Total energy consumption  
t

iC  

The minimum 

value of variables 

for the ant at i-th 

position 

Pf False alarm (probability) 
t

id  

This represents the 

maximum value of 

variables for the 

ant at i-th position 

Pd Detection (probability)   

 
Fig. 2.  The frame structure of separated energy harvesting and spectrum 

sensing. 

IV. PROBLEM FORMULATION FOR MULTI-OBJECTIVE 

OPTIMIZATION 

This section aims to formulate a fitness function for 

throughput maximization and the energy ratio at the 

secondary transmitter (ST).  

A. Energy Harvesting and Consumption 

The energy harvester in the secondary transmitter harvests 

energy from the RF signal of the primary transmitter if there 

is no user signal. As shown in Fig. 2, each frame duration is 

“T” and the energy arrival is random, with Ph as the average 

rate. In the harvesting slot, the average harvested energy is 

given as Eh = Phτ1, which is available to the ST in the 

sensing slot. The secondary transmitter executes spectrum 

sensing operation using energy detection and consuming 

energy Es = esτ2 in the sensing phase, where es is the power 

required for spectrum sensing. The assumption made in this 

model is that the energy harvested in different harvesting 

timeslots is not dependent on the channel between the 

primary transmitter and the RF energy harvester. 

The Markov process is used to model the state occupation 

of the channel [32]. The sensing results of the channel being 

occupied or idle are given by the channel occupation state as 

θn   {0 (idle), 1 (occupied)} for the slot n. The state 

transition probabilities with the channel occupancy state are 

illustrated in Fig. 3. 

 
Fig. 3.  State transition diagram. 

Here, the probability of transit is qi for the idle state and 

qo for the occupied state. Thus, the steady-state probabilities 

are given by 
1

2

o

i

i o

q

q q





 
 and 

0

1
,

2

i

i o

q

q q





 
 

respectively [17], with . 
0

1
i

   

Let et represent the power required for data transmission. 

If the secondary transmitter finds the spectrum occupied, 

i.e., θn = 1, it starts harvesting the energy from the primary 

transmitter but does not consume energy for data 

transmission. If the channel is idle, i.e., θn = 0, the secondary 

transmitter consumes Et = et(T - τ1 - τ2) (1 - θn) energy 

during the transmission phase. Thus, the expression for the 

average energy consumed in slot n at ST is 
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 2 1 2[ ( )(1 )].c s t nE e e T         (1) 

Energy consumption should not exceed the amount of 

harvested energy, i.e., Ec ≤ Eh, in each slot, since the 

harvested energy depends on the availability of the primary 

transmitter signal, so the energy constraint is considered to 

meet the power required for sensing and transmission. 

When the secondary transmitter is active and the primary 

channel is idle, the novel fitness function derived from the 

energy ratio in terms of the average energy harvested into 

the average energy consumption is given as 

 1

2 1 2

, .
[ ( )(1 )]

 h

rati ho c

s t n

P
E E

e e T
E



   


 


 
 (2) 

Energy consumption and spectrum sensing are 

intertwined, since ST consumes energy during the sensing 

phase. So, it becomes essential to consider the restrictions 

on energy consumption for sensing in the separated 

spectrum sensing and energy harvesting (SSSEH). 

B. Optimization of Sensing Duration for Throughput 

Maximization 

Spectrum sensing is performed by the secondary 

transmitter with energy detection of the RF signal 

periodically in the duration of the slot “T”. It is also 

assumed that the secondary transmitter has enough data for 

transmission. The following hypothesis is considered to 

detect whether the spectrum is occupied or idle 

 
0

1

( ), ,
( )

( ) ( ), ,
n

w m H
y m

s m w m H


 


 (3) 

where H0 and H1 give the channel state (occupied or idle), 

respectively, yn(m) is the mth sample of the energy detector 

in a slot “n”, s(m) represents the signal of the primary 

transmitter, and w(m) represents the noise, respectively. 

Both are random processes that are supposed to be 

independent circularly symmetric complex Gaussian 

(CSCG) with respective variances σ2
p and σ2

w. To optimize 

the sensing duration τ2 in the SSSEH scenario, the sensing 

performance is given in terms of the false alarm probability 

Pf ( , ),
2

   and signal detection probability Pd ( , )
2

  : 

 
2 22

( , ) 1 ,f s

w

P Q f


  


  
    

  

 (4) 

 
2 22 2

( , ) 1 ,d s

w p

P Q f


  
 

  
   
    

 (5) 

where Q(x) represents the standard q function, ε ∈ R+ 

represents the threshold where R+ denotes the set of non-

negative real numbers, and fs represents the sampling 

frequency. The number of samples in the sensing slot is τ2fs. 

As the secondary transmitter harvests the RF energy from 

the primary transmitter, there is a likelihood of collision 

between the primary and secondary transmitters.  

Case I Primary network is idle. Let Pnc(τ2, ε, Ph) denote 

the probability of no collision while sensing when the 

primary channel used by the primary network is idle. The 

throughput of the secondary network when the primary 

network is idle is log(1 ),nc sR    where s  is signal-to-

noise ratio at the input of the secondary transmitter 

 
2 2 2( , , ) ( , , )(1 ( , )),nc h s h fP P P P P        (6) 

where 2( , , )s hP P   is the probability of the secondary 

transmitter being active. The system is considered active 

from a long-term perception. There is an upper bound on the 

activation probability in SSSEH given by  

 

2 2

1 2

( , , ) ( , , )

(1, ( , , , )).

s h s h

h

P P P P

= min Est P

   

  

 

 (7) 

Case II Primary network is occupied. Let Pc (τ2, ε, Ph) 

denote the probability of collision while sensing when the 

primary channel is occupied. The throughput of the 

secondary network when the channel is occupied is 

log(1 ).
(1 )

s

c

p

R



 


 The received signal-to-noise ratio in 

the secondary network for secondary and primary signals is 

γs and γp, respectively 

 2 2 2( , , ) ( , , )(1 ( ,c h h dP P P P P       
s

  (8) 

The average throughput of the ST depends on the 

probability that the secondary transmitter transmits without 

collision and in the presence of collision. Thus, the 

normalized average throughput Rs using (6) and (7) is given 

as 

 

1 2

1 2 2

2

( )
( , , , ) [( ( , , )

( , , ) )].

s h nc h o i

c h i o

T
R P P P C

T

P P C

 
     

  

 
 

  (9) 

Protection of the licensed user, i.e., the primary receiver, 

is of utmost importance. So, when the channel of the 

primary network is occupied, the collision probability 

should be less than its target value 

 2( , , ) ,c h tcP P P    (10) 

where Ptc is the target collision probability of protecting the 

primary network. Here, the sensing duration is a crucial term 

to which throughput maximization is achieved. Therefore, 

the novel fitness function used for sensing duration 

optimization is formulated as 

 2 1 2

2

( , , , ),

. ( , , ) , .

max

s h

c h tc c h

R P

s t P P P E E

   

   
 (11) 

To maximize the fitness function in (11), the rank-based 

multi-objective optimization (RMOALO) is proposed to 

optimize the sensing duation and solve the problem of 

throughput maximization in the given optimization problem. 
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V. PROPOSED META-HEURISTIC ALGORITHM (RMOALO) 

AND OTHER TECHNIQUES TO SOLVE SENSING DURATION 

OPTIMIZATION PROBLEM IN SSSEH 

We use multi-objective optimization algorithms to solve 

the constrained optimization problem with multiple 

variables. In particular, MOPSO, MOMFO, MOALO, and 

the proposed RMOALO are used to solve duration 

optimization problem for the sensing. A brief description of 

these algorithms is given below. 

A. Multi-Objective Particle Swarm Optimization 

MOPSO [27] extends particle swarm optimization (PSO) 

to handle multiple objectives. Multi-objective particle 

swarm optimization incorporates Pareto dominance into 

PSO. This concept creates preferences among the swarm 

particles, developing leaders and guiding other particles. 

These different leaders are the solutions, but only one leader 

is selected to update the velocity that represents their 

movement.  

MOPSO involves the basic steps: 

 Initialization of the population of particles “i” as pop[i] 

and the velocity of each particle vel[i]. Each particle “i” 

has a position pop[i] ∈ rep, representing a possible 

solution. After a certain time, the position of the particle 

is obtained by adding its velocity, vel[i] ∈ rep, to pop[i] 

 [ ] [ ] [ ].pop i pop i vel i   (12) 

 Evaluate each of the particles in the population and 

store the position of the particles in the population 

representing non-dominated solutions and leaders in the 

repository (rep).  

 Initialize the memory of each particle that guides it to 

travel through the search space. This memory is also 

stored in the repository. 

 The velocity of a particle “i” is based on the best 

position already fetched by the particle, pbest[i], and the 

best position already fetched by the set of neighbors of 

“i”, rep, which is a leader of the repository 

 

1 2[ ] [ ] ( [ ] [ ])

( [ ] [ ]).

vel i IW vel i r pbest i pop i r

rep h pop i

      

   (13) 

The coefficient IW is the particle inertia that controls how 

much the previous velocity affects the current one and takes 

a value of 0.4; r1 and r2 are random numbers in the range 

[0…1]. If the new position and the current pbest[i] are non-

dominated, the new value is chosen randomly between these 

two vectors. rep[h] is a particle from the repository, chosen 

as a guide for i.  

As there are many best solutions from which the fittest 

one should be chosen, but due to lack of exploitation, 

MOPSO is incapable of searching globally. Therefore, it 

converges early without finding the fittest solution. Hence, 

we tend to solve the problem with the MOMFO algorithm.  

B. Multi-Objective Moth Flame Optimization 

MOMFO has modified Moth flame optimization [33] that 

includes the following steps. 

 Initialize the position of “i” number of “m” moths and 

“j” number of “f” flames. 

 For each moth position, evaluate fitness. 

 Store the non-dominated solutions in the repository 

storage, i.e., positions of the moth. 

 Find the best local position for each moth in the first 

iteration, update the moth position in the second iteration 

onwards, and compare the updated position of moth with 

the previous position. 

 The position of each moth “i” is updated with respect to 

jth flame 

 ( , ),i i jm S m f  (14) 

where S designates a spiral function which permits each 

moth to fly around a flame; it is not clear that the moth has 

to fly in the space between the moth position and the flame. 

It can also discover the other space. Therefore, there is a 

more efficient exploration and exploitation of the search 

space by moths 

 ( , ) cos 2 ,bt

i j i jS m f d e t f   (15) 

where di is the absolute distance |fj−mi|, b is the constant for 

controlling the shape of the logarithmic spiral function, t is a 

random number between [-1, 1]. Furthermore, the reduction 

in number of flames Nf is adaptive and is reduced with 

respect to the increase in iteration 

   max

max ( ),
f

f f

maxiter

N
N round Niter

I
  (16) 

where Nfmax is the maximum number of flames. The 

MOMFO has the capability to reach the best solution due to 

efficient exploration and exploitation of the search space as 

this algorithm updates the position based upon the absolute 

distance between moth and flame.  

C. Multi-Objective Antlion Optimizer (MOALO) 

MOALO is the extended version of Antlion Optimization 

(ALO) and follows the same search behavior as ALO. It is 

inspired by the unique hunting behavior of antlions. 

Antlions are net-winged insects, and the chosen prey are 

ants. Antlions form the cone-shaped trap in the sand for ants 

while throwing out the sand [34].  

Mathematical Modeling of MOALO. The mathematical 

modeling of hunting includes five different steps: search 

agents with random walk, trap formation, trap ants, catching 

prey, trap reconstruction, and elitism [35]. 

Random walk of search agents. The search for food 

makes the ants move stochastically over the search space. 

The hunting process of antlions is modeled by the 

interaction of the antlions with the ants modeled by random 

walk as 

 

1 2

max

( ) [0, (2 ( ) 1), (2 ( )

1)... ..., (2 ( ) 1)].iter

X t cumsum r t cumsum r t

cumsum r t 

  

   (17) 

The cumulative sum is calculated by cumsum with the 

maximum number of iterations as max-iter and r(t) as a 

stochastic function, and t indicates the random walk step, 

and the rand is any number between 0 and 1 
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1 0.5,

( )
0 0.5.

if rand
r t

if rand


 


 (18) 

The steps of the ant should be within defined boundaries, 

so  

 
( ) ( )

,
( )

t t t

t ti i i i

i i

i i

X a d C
X C

b a

  
 


 (19) 

where ai and bi signify the i-th ant variable showing the 

minimum and maximum random walk. For each iteration, 
t

iC  and t

id  represent the i-th variable indicating the 

minimum and maximum at the iteration t, respectively. 

Trap ants. The random walk of ants is affected by the 

hypersphere traps represented by vectors c and d set by the 

Antlions: 

 ,t t t

i jc Antlion c   (20) 

 ,t t t

i jd Antlion d   (21) 

where ct and dt are the minimum and maximum of all the 

variables in the t-th iteration, t

jAntlion  at the t-th iteration 

represents the position of the selected j-th antlion. 

Sliding ants towards antlions. The ants slid towards 

antlions by shooting the sand outwards by them. The 

trapped ants slide down, thus preventing them from 

escaping. Hence, reducing the boundaries of the random 

walk of the ant to get a decreasing radius of the hypersphere 

is modeled as: 

 ,
t

t c
c

I
  (22) 

 ,
t

t d
d

I
  (23) 

where I is a ratio for controlling the radius, ct and dt is the 

minimum and maximum of all the variables at the t-th 

iteration. 

The ratio 1 10 ,w t
I

T
   where t represents the current 

iteration, T is the maximum number of iterations, and w is 

defined based on the current iteration. 

Catching prey and reconstruction of the pit. The prey 

caught (ant) at the bottom of the pit becomes fitter than its 

corresponding antlion. An antlion is then required to update 

its position to the latest position of the hunted ant to catch 

new prey in the next iterations. The following equation 

simulates this 

 ( ) ( ).t t t t

j i i jAntlion Ant if f Ant f Antlion  (24) 

Here, t denotes the current iteration and t

iAnt  specifies 

the i-th position of the ant at iteration t. The function f 

denotes the fitness value, and ≺ shows the t

iAnt  rules 

.t

jAntlion  

Elitism. Maintaining and saving the fittest antlion 

obtained at any point of the optimization process depends on 

the concentration of solutions in the search space and is 

known as elitism. The elite antlion is the fittest antlion in 

each iteration 

 ,
2

t t

t A E
i

R R
Ant


  (25) 

where t

AR  is the random walk around the antlion in iteration 

t, and t

ER  is the random walk around the elite in iteration t. 

Here, the roulette wheel is used to select the random walk. 

The archive is updated with the solutions explored in the 

next iteration. The selected solution is based on the 

probability using the equation as follows 

 .i

i

c
P

N
  (26) 

The probability with which the solution is removed from 

the archive is as follows 

 .i

i

N
P

c
  (27) 

Here, Ni represents the number of solutions for the i-th 

solution in the neighborhood, and c is a constant with a 

value greater than 1.  

As MOALO gives diverse new solutions having very 

close values, it is necessary to handle this behavior with a 

suitable algorithm. 

D. Proposed Novel Rank-based Multi-Objective Antlion 

Optimization (RMOALO) 

The strength of a metaheuristic algorithm on a given 

optimization problem is determined by its ability to provide 

a balance between the global search and the local search. 

The proposed algorithm (see Algorithm 1) uses rank-based 

selection instead of the roulette wheel selection used in 

MOALO. To prove the competence of this selection 

method, we have also implemented MOALO with a 

tournament-based selection method. Tournament selection is 

used in one of the variants of antlion optimization (ALO) 

[36]. MOALO uses a repository to store non-dominated 

Pareto optimal solutions obtained at a given point in time. 

Solutions are then chosen from this repository using a 

roulette wheel mechanism based on the coverage of 

solutions as antlions to guide ants towards promising 

regions of multi-objective search spaces. The selection 

probability of all individuals becomes almost identical, 

which works against the basic idea of genetic algorithms. 

Thus, we proposed the algorithm, which is named a “rank-

based multi-objective optimization algorithm” (RMOALO). 

Rank-based selection involves sorting all the random walks 

in decreasing order, arranging them in a queue, and moving 

towards the antlions from the higher-order rank to the lower 

one. Therefore, the position of ants in (25) updated using a 

roulette wheel is modified to rank selection, helping to faster 

convergence. Thus, the arrangement of random walk of ants 

is listed in decreasing order and ranked accordingly 

followed by the rank of ants: 

 1 1 1 1

1 2 3 ... ... ... ,t t t t

np p p p      (28) 
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 1 2 3[ , , ......... ].t t t t t

y nR R R R R  (29) 

Algorithm 1. Pseudocode of the RMOALO algorithm. 

 
 

The updated position of the ants after ranking is given by 

 ,
2

t t

y Et

i

R R
Ant


  (30) 

where [1,2,..., ].y n   

Mapping Metaheuristics to Throughput Maximization in 

SSSEH. Relating the metaheuristic technique to the fitness 

function is essential for understanding the behavior of the 

problem and solution. Similarly to the mapping done 

between the algorithm based on swarm intelligence and 

energy-efficient CR in [37], the correlation between the 

metaheuristic algorithms and the fitness function becomes 

important (see the data in Table II below). 

TABLE II. METAHEURISTIC ALGORITHMS AND FITNESS 

FUNCTION ANALOGY. 

S. 

no. 

Throughput 

Function  
MOPSO MOMFO 

MOALO/

RMOALO 

1 

Decision 

Variables 

Count 

Swarm 

Behavior 

Moth and 

flame 

characteristics 

Ant 

characterist

ics 

2 

Secondary 

transmitter-

Sensed 

samples 

Number of 

particles/sw

arm 

Number of 

moth and 

flame 

Number of 

ants/search 

agents 

3 

Fitness 

function-

Throughput 

maximization 

Fitness 

value of 

swarm 

Fitness of 

Moth position 

Fitness 

value of 

Ant 

4 

Optimum 

solution-

Sensing 

duration 

Fittest 

particle 

position  

Position of the 

moth based 

upon distance 

to flame 

Elite 

Antlion 

position 

and its 

fitness 

value 

VI. SIMULATION RESULTS AND DISCUSSION 

In this section, the throughput analysis for the separated 

spectrum sensing and energy harvesting scenario for the 

EHCRN with the proposed algorithm is confirmed by means 

of MATLAB simulations. The implementation was 

performed on a machine running the Windows 10 operating 

system version 21H1. It has an installed RAM of 8 GB 

using 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz 

1.38 GHz, 64 Bit Processor. For simulation purposes, the 

system parameters used are mainly derived from [14] (as 

shown in Table III below). The average harvested energy is 

taken between 0.01 µw to 0.16 µw [38]. 

TABLE III. PARAMETER VALUES. 

Symbol Parameter Default Value 

T Duration of a timeslot 0.1 s 

Es Sensing energy 110 mW 

Et Data transmission energy 410 mW 

Eh Average harvested energy 0.01 µw to 0.16 µw 

SNR Signal-to-noise ratio -15 dB 

N Number of sensing samples 1000 

 

The simulation settings for all five algorithms are: 

population size is 20, number of iterations is 500, archive 

size is 100, and 30 Monte Carlo trials are performed for 

each case. The extremely large value of this population size 

(e.g., 90) will increase the computational complexity of the 

optimization algorithms, which is undesirable. So, an 

intermediate value of the population is chosen.  

To measure the effectiveness of the proposed rank-based 

multi-objective antlion optimization (RMOALO), we have 

considered five different test functions F1–F5. The details of 

the benchmark functional parameters in terms of 

dimensionality, search domain, and optimal global value are 

shown in Table IV below [39], [40]. The dimensionality 

exhibits the dimensions of the test functions, and the search 

domain marks the test area of the search space, and the 

1. Initialize ant (potential solutions) of 

normalized sensing period (x ϵ (0,1)) with 

population size N, and max number of 

iterations. 

2. Assign the value for parameters T, Es, Et, 

Eh, N (for which algorithm needs to be 

executed). 

3. Calculate Fitness value, i.e., Average 

Throughput function for each solution from 

step 1. Fittest 

4. Select Antlion using Rank. Update its 

respective position (elite antlion). 

5. While (iteration count is less than max 

iteration) 

for (Each antlion) 

Antlion to be selected by rank 

selection method. 

Randomly walking ants are slided in to 

the trap as per following criteria: 

opt=rand; 

if opt > 0.75 

lb=antlion+lb; 

ub=antlion+ub; 

elseif opt > 0.5 

lb=antlion-lb; 

ub=antlion-ub; 

elseif opt > 0.25 

lb=-antlion+lb; 

ub=-antlion+ub; 

else 

lb=-antlion-lb; 

ub=-antlion-ub; 

end 

Generate random walk of Ant’s path 

around elite antlion 

Generate random walk of Ant's path 

around the shortlisted antlion 

Normalize random walk and compute the 

location of Ant 

if Ant is available in the search 

dimension. 

Make the ant relocate in search 

dimension 

end if 

end for 

fitness factor of ants needs to be 

calculated 

for (each antlion) 

if the fitness factor is improved 

compared to antlion 

antlion eats up Ant (antlion needs 

to be updated) 

end if 

end for 

Update the elite antlion 

End while 

84



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022 

global minimum showcases the minimum value taken by the 

test functions to achieve convergence.  

The comparative performance of the proposed algorithm 

and other algorithms for different test functions is given 

using the mean minimum, maximum, and standard deviation 

metrics (see data in Table V). 

TABLE IV. DIMENSIONALITY, SEARCH DOMAIN, AND GLOBAL MINIMA FOR DIFFERENT BENCHMARK FUNCTIONS. 

Name  Function Dimensionality Search Domain Global Minima 

ZDT1 

(F1) 

Minimize: 
1 1( )f x x  

Minimize: 
2 1( ) ( ) ( ( ), ( )), :f x g x h f x g x where   

2

9
( ) 1

1

N

i

i

G x x
N 

 

  

1
1

( )
1( ( ), ( )) 1

( )

f x
F f x g x

g x
   

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30 

2 [0, 1] 0 

Ackley 

(F2) 
2

1 1

1 1
( ) 20 [ 0.2 ] [ cos 2 ] 20

D D

i ii i
f x exp x exp x e

D D


 
        30 [-100, 100] 0 

EASOM 

(F3) 
2 2

1 2 1 2( ) ( ) ( ) [( ) ( ) ]f x cos x cos x exp x x       2 [-100, 100] -1 

GRIEWANK 

(F4) 

2

1
1

( ) cos 1
4000

D
D i i

i
i

x x
f x

i


     30 [-600, 600] 0 

RASTRIGIN 

(F5) 
2

1
( ) 10 [ 10cos 2 ]

D

i ii
f x D x x


    30 [-5.12, 5.12] 0 

TABLE V. PERFORMANCE COMPARISION OF MOMFO, MOPSO, MOALO-TOURNAMENT, MOALO-ROULETTE WHEEL, AND RMOALO 

FOR DIFFERENT TEST FUNCTIONS. 

Test Function Algorithm Mean Minimum Maximum Std Deviation 

F1 

ZDT1 

MOPSO 0.4420415 0.0028335 1 0.274110095 

MOMFO 4.276522167 0.301349762 8.789737424 2.15542331 

MOALO-Roulette Wheel 0.695312479 0.509284203 1.009716235 0.157357799 

MOALO-Tournament 0.6765339 0.5700102 1.0000000 0.112807534 

Proposed RMOALO 0.777572714 0.692868283 1.002267562 0.083223097 

F2 

Ackley 

MOPSO 16.437788 2.054921 21.06954613 5.510931771 

MOMFO 20.42244285 2.786300012 22.34790691 4.250018151 

MOALO-Roulette Wheel 15.84560452 0.000649989 19.97847592 6.201644477 

MOALO-Tournament 16.20895104 0.038137074 19.99663289 5.509201695 

Proposed RMOALO 16.18311188 0.829800307 20.30860279 4.134937919 

F3 

Easom 

MOPSO -1.75E-22 -6.12E-21 0.00E+00 1.03441E-21 

MOMFO 2.48E-07 -1.08E-23 2.48E-05 2.47965E-06 

MOALO-Roulette Wheel -0.19307025 -0.885716657 -2.2144E-273 0.295860643 

MOALO-Tournament -4.24E-04 -4.24E-02 -1.06E-272 0.004243454 

Proposed RMOALO -9.12E-03 -4.56E-01 -1.56E-285 0.053573036 

F4 

Griewank 

MOPSO 71.39511561 11.14875606 180.0120547 38.55836861 

MOMFO 35.68924762 1.299758186 91.13924973 20.76193545 

MOALO-Roulette Wheel 17.69652674 0.36676992 50.16619774 13.32720051 

MOALO-Tournament 11.84277996 0.21466434 50.11672004 10.69809831 

Proposed RMOALO 13.23507481 1.077900875 50.24496823 10.38179246 

F5 

Rastrin 

MOPSO 32.8 4.072911 57.849427 15.2126232 

MOMFO 37.37558614 9.62931289 77.61343833 13.72352695 

MOALO-Roulette Wheel 31.01756762 9.370621181 53.47901187 11.50756297 

MOALO-Tournament 29.63183816 8.0510918 52.01330333 10.14598691 

Proposed RMOALO 16.34113611 4.287325569 62.38888473 11.47344816 

Rank-based multi-objective optimization (RMOALO) 

shows the least standard deviation for the functions F1, F2, 

and F4 and is close to the lowest standard deviation for the 

rest of the two functions F3 and F5. On the other hand, 

Multi-objective moth flame optimization and multi-

objective particle swarm optimization (MOPSO) have 

displayed relatively higher standard deviation for most of 

the functions. This clearly shows that rank-based multi-

objective optimization has relatively high stability, thus 

showing robustness and consistency in its performance. 

Thus, it can be interpreted that the proposed RMOALO is 

superior or comparable to other algorithms. For any 

optimization algorithm, it is very important that it should not 

be stuck to the local optima and should converge faster.  

The convergence characteristics for the benchmark test 

functions (F1–F5) for each algorithm are shown in Figs. 4–8 

for SNR values −15 dB. In this paper, to get a clearer view 

on the dependency of the fitness function on each variable, 
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the convergence curve is plotted for the optimum value of 

each variable. The convergence of the proposed algorithm is 

much better than the other algorithms towards the optimum 

value of the fitness function. Because of the rank selection 

method, it is able to successfully overcome the local optima 

and find the global optima. RMOALO can reach an optimal 

value in fewer iterations, also avoiding premature 

convergence.We have evaluated the strength and 

competence of the proposed RMOALO and other algorithms 

by applying it to the sensing duration optimization problem 

to achieve maximum throughput for EHCRN. The fitness 

function in (11) is optimized for three different values of the 

harvested energies. Thirty independent runs are made to 

eliminate any inconsistency, involving 30 Monte Carlo 

initial trial solutions with a randomly generated population 

of size 20. The maximum number of iterations is set to 

1000. The performance parameters of the formulated 

problem have been given in terms of the mean, maximum, 

median, and standard deviation values of the normalized 

sensing duration (ratio of the sensing duration to the overall 

time slot) along with the mean fitness value of average 

throughput (data in Table VI). RMOALO is observed to 

provide the higher value of throughput in various iterations 

of the harvested energy Eh at the lowest mean value of the 

normalized sensing duration. It is also stable in its 

performance, as it offers the lowest standard deviation 

among all other algorithms. 

 
Fig. 4.  Convergence characteristics for ZDT1. 

 
Fig. 5.  Convergence characteristics for Ackley. 

 

Fig. 6.  Convergence characteristics for RASTRIN. 
 

Fig. 7.  Convergence characteristics for Easom. 

 
Fig. 8.  Convergence characteristics for Griewank. 
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TABLE VI. COMPARISION OF STATISTICAL RESULTS OF NORMALIZED SENSING DURATION, AVERAGE THROUGHPUT FOR VARYING 

HARVESTED ENERGY. 

 Normalized Sensing Duration 
Average 

Throughput 

ALGORITHM Mean Maximum Median 
Standard 

Deviation 
Mean fitness value 

Eh = 0.13 µw 

MOPSO 0.47018 0.8 0.5046 0.210751497 0.534947943 

MOMFO 0.436468 0.799919 0.4641 0.244203995 0.586831472 

MOALO-Roulette Wheel 0.323484 0.8 0.2264 0.31343693 0.735205996 

MOALO-Tournament 0.213435 0.8 0.185 0.161605791 0.946340244 

Proposed RMOALO 0.135812 0.8 0.0883 0.162575498 1.054686624 

Eh = 0.10 µw 

MOPSO 0.418764 0.8 0.4651 0.252006978 0.560740295 

MOMFO 0.3898 0.780895 0.2242 0.224243203 0.604630478 

MOALO-Roulette Wheel 0.142679 0.8 0.2061 0.144568157 1.007506222 

MOALO-Tournament 0.109786 0.794098 0.0605 0.13707374 1.07852165 

Proposed RMOALO 0.109754 0.8 0.0861 0.120687845 1.088715996 

Eh = 0.07 µw 

MOPSO 0.359586 0.8 0.3503 0.242864035 0.48524242 

MOMFO 0.389411 0.789658 0.3807 0.215096189 0.433160618 

MOALO-Roulette Wheel 0.132189 0.8 0.0849 0.148451314 0.132189402 

MOALO-Tournament 0.352831 0.8 0.3714 0.335657676 0.555828206 

Proposed RMOALO 0.089198485 0.8 0.031852806 0.141880092 0.893501103 

The convergence characteristics of the average 

throughput for different values of the average harvested 

energy (Eh) are shown in Figs. 9–11. The RMOALO has the 

ability to overcome local optima with better convergence 

and is successful in obtaining the best values as compared to 

other algorithms. The impact of normalized sensing duration 

on the average throughput with RMOALO reaches a 

maximum in a few iterations. Thus, RMOALO converges 

faster to get the higher fitness value. 

We can see from Table VI that the behavior of the sensing 

duration changes with the average harvested energy in three 

distinct values of the harvested energy Eh = 0.13 µw, Eh = 

0.10 µw, and Eh = 0.07 µw. The shorter the sensing 

duration, the higher the average throughput if the harvested 

energy is higher. As the normalized sensing duration 

increases, the average throughput tends to decrease. 

Therefore, an optimal value of sensing duration 
2  exists for 

the amount of energy harvested for which the average 

throughput becomes maximum. For a particular sensing 

time, the average throughput decreases as Eh decreases. 

When Eh is maximum, the average throughput Rs attains a 

maximum value, and after reaching a maximum value, it 

decreases as there is an increase in 
2  and decrease in Eh. 

 
Fig. 9.  Average throughput across iterations when the harvested energy Eh 

= 0.07 µw. 

 
Fig. 10.  Average throughput across iterations when the harvested energy 

Eh = 0.10 µw. 

 
Fig. 11.  Average throughput across iterations when the harvested energy 

Eh = 0.13 µw. 

To validate the effectiveness of the proposed optimization 

technique, a comparison of throughput maximization for the 

separated spectrum sensing and energy harvesting (SSSEH) 

scenario is also done with baseline energy-efficient 

spectrum sensing schemes in the cognitive radio network. 

The same initial setup conditions of the sensing duration = 

50 µs, average harvested energy Eh = 300 J, the sensing 
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energy Es = 1 J, and the energy consumed for transmission 

Et = 3 J are considered for simulation purposes. Figure 12 

shows the analysis for SNR = −28 dB. The throughput 

achieved using RMOALO shows 14.02 % improvement 

over the energy-efficient spectrum-sensing scheme - 

homogeneous CR and 6.74 % improvement over the energy-

efficient spectrum-sensing scheme - heterogeneous CR, as 

shown in Table VII. 

 
Fig. 12.  Improvement in performance using RMOALO compared to the 

baseline scheme. 

TABLE VII. AVERAGE THROUGHPUT VERSUS NORMALIZED 

SENSING DURATION. 

Scheme 
Maximum 

Throughput 
Reference 

Energy-efficient spectrum 

sensing scheme - 

homogeneous network 

2.64 Table IV [26] 

Energy-efficient spectrum 

sensing scheme - 

heterogeneous network 

2.82 Table IV [26] 

Separated spectrum sensing 

energy harvesting - EHCRN 
3.01 Fig. 12 

VII. CONCLUSIONS 

In the separated spectrum sensing and energy harvesting 

cognitive radio network with the maximum throughput 

demands, we maximized the average throughput by 

optimizing the sensing duration of the ST. This has been 

achieved by leveraging the proposed RMOALO 

metaheuristic algorithm. With the SNR value of -15 dB and 

population size = 20, for varying the sensing time and the 

average harvested energy, the proposed RMOALO is 

16.33 % more efficient than other metaheuristic algorithms 

considered.  

There are several directions in which the analysis of this 

work could be extended. As the work considers EHCRN and 

metaheuristics, it can be extended from both realms for 

some future research, such as non-linear energy harvesting 

device-to-device network [41], hybrid metaheuristic 

optimization [42], and bidirectional networks [43]. 
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