
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022

1Abstract—Wireless technologies are essential for modern

people to maintain uninterrupted connection to the Internet.

The most popular standards for wireless technologies are

standards of the IEEE 802.11 family. Currently, data

transmission rate achievable by IEEE 802.11ac or 802.11ax

standards can reach up to 10 Gbit/s. Different IEEE standards

have specific data transmission rates. For example, the IEEE

802.11ah standard or Wi-Fi HaLow (code name) operates in

the 900 MHz band, which is an unlicensed frequency band

below 1 GHz, and is called the “Sub-1-GHz” range. In theory,

this standard can provide coverage range of up to 543 meters

indoors and data transfer rate of up to 347 Mbit/s (using a

maximum of four spatial streams and 16 MHz channel

bandwidth). The great benefit of the 802.11ah standard is low

energy consumption, which enables communication between

devices from the Internet of Things (IoT) over long distances

without using a lot of energy. The Wi-Fi HaLow standard is

being studied by the authors of the presented article in the ns-3

network simulation program with the 802.11ah module

installed and implemented in Docker containers, VirtualBox

Virtual Machines (VMs) with a running Linux operating

system. During the simulations, results were obtained for the

Docker containers simulation with a limited number of stations

over different simulation times. These results have been

studied in different scenarios. In the scenarios, the results of

the Wi-Fi HaLow network simulation were converted into

another simulation time, and thus were compared with each

other.

 Index Terms—Linux; ns-3; Docker; Wi-Fi HaLow; IEEE;

Wireless; 802.11.

I. INTRODUCTION

Modern information technologies are evolving rapidly,

wireless networks of the newest generation are becoming

more common, powerful, and demanding. The mobility of

the wireless communication networks is the most important

benefit. Such networks are used to transmit data between

two or more devices without using wired connections.

Radio, optical, and laser waves can be used for data

transmission. There are several types of wireless networks:

WPAN, WLAN, WMAN, and WWAN networks. Users can

use their network devices on WLAN and connect to existing

Internet of Things (IoT) devices. It is called

“internetworking of physical devices”. IoT devices

Manuscript received 3 November, 2021; accepted 6 April, 2022.

technology is equipped with sensors and other

communication devices. This technology enables remote

access to information from sensors equipped objects and

remote control of these objects using existing network

infrastructure [1]. IoT devices can be simulated using ns-3

network simulator in Linux operating system with Docker

containers to study several types of simulation. The problem

is implementing the IEEE 802.11ah protocol in simulation

software to be researched in relation to the WLAN wireless

network topology. For example, as a network simulator with

required modules. In our case, multiple products must be

used for such a simulation: Virtual Machines (VMs) with

Linux, Docker containers software, Network Simulator ns-3

with experimental 802.11ah module, Wireshark packet

analyzer software for testing connections and networking

protocols for secured connection with M2M technology

(e.g., Telnet or SSH).

II. LINUX OPERATION SYSTEM AND VMS

What is Linux? It is an open-source Unix-like operating

system based on a Linux kernel, which is typically packaged

as a Linux distribution. Distributions include the Linux

kernel and additional software and libraries, some of which

are provided by the GNU Project. The most popular Linux

distributions are Ubuntu, Debian, and Fedora. These are

Graphical User Interface (GUI)-based operating systems.

There are also multiple Command Line Interface (CLI)-

based operating systems, e.g., CentOS or Alpine. What is

the difference between GUI and CLI operating systems?

This depends on the goal of the user. GUI may be used to

work with multimedia or graphical programs. CLI can be

used for networking, e.g., to deploy a terminal operating

system that works with a virtual machine or Docker

container, to create an FTP or HTTP web server with a

secured connection over SSH or Telnet protocols. For Linux

administration in networks, it is better to use a CLI-based

operating system and rely on some partitions of Linux

networking - Low-Level Configuration, Local Network

Servers, Internet Servers, and Network Security and Router

Functions. In the author’s opinion, Linux is more suitable

for this task, compared to Windows or Mac OS, since Linux

has some extended functionality: flexibility, stability,

performance, it is networking friendly and secure [2].

Evaluation of a Long-Distance IEEE 802.11ah

Wireless Technology in Linux Using Docker

Containers

Daniils Aleksandrovs-Moisejs*, Aleksandrs Ipatovs, Elans Grabs, Dmitrijs Rjazanovs

Institute of Telecommunications, Riga Technical University,

Azenes street 12, LV-1048, Riga, Latvia

daniils.aleksandrovsmoisejs@gmail.com

http://dx.doi.org/10.5755/j02.eie.31146

71

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022

Virtual Machine or Virtualization process is the provision

of computing resources pool or logical relationship, which

is separated from the hardware modifications and ensures

isolation of logical relationships for computations over a

single physical resource. There is a program for

virtualization - a hypervisor or “virtual machine monitor”

(Fig. 1). This is a program or hardware circuit that enables

multiple operating systems to run in parallel on the same

host machine. The hypervisor also provides the isolation of

operating systems, their protection and security, resources

sharing between different operating systems, and data

management. In addition to that, the hypervisor must supply

connectivity for operating systems from the host machine

(e.g., FTP servers or secured network connections) in the

same way as if these operating systems were to work on

different physical computers.

There are plenty of criteria and reasons for using

virtualization nowadays. For example, simultaneous use of

multiple operating systems with virtual machine software

installed on a single physical host machine, which must run

multiple virtual operating systems. The performance of the

operating system depends on computer resources, in

particular, the volume of Random Access Memory (RAM),

free hard disk space, etc. [3]. Each virtual machine can be

used by another virtual machine; e.g., there can be a mail

server, database server, or another application in a single

virtual machine.

Fig. 1. VM Architecture.

In our case, VMs with Linux operating system were used

with required packages installed: ns-3 discrete-event

network simulator and additional pre-installed modules.

Linux is a very suitable operating system for Python

applications (ns-3 was written in Python programming

language). VMs were used, as it was necessary to set up a

connection between host-machine and VMs even when

hypervisor VMs are in background mode (working without

loaded GUI), and they must be connected by CLI program

via SSH protocol with the host-machine.

Virtualization can significantly reduce hardware and

energy consumption costs. In most cases, modern computers

use only a fraction of their potential computational power

and run with low average system load. Some hardware

resources have been evaluated before the experimental part.

Instead of running multiple such physical computers with

partial load, they can be packaged (aggregated) in a form of

various virtual machines run by a single powerful host

computer with further balancing of VM loads [3]. The

science of virtualization is making great advances, and there

are several types of virtualization. In addition to

independent virtualization, there is also another

virtualization type today, containerization.

III. DOCKER CONTAINERIZATION

Containers have some differences compared to the

structure of the virtual machine. Containers were designed,

distributed, and operated for products. Software developers

can build software locally and be sure that it will work in

the same way regardless of the host environment. DevOps

engineers can focus on the network deployment, host

resources, and operation time allocation. Containers can be

used and extended at phenomenal speeds throughout the

industry. Docker is a “platform as a service, PaaS” assembly

product, which uses operating-system-level virtualization to

deliver software in packages. It is called a “container” [4].

The Docker containerization architecture is a “client-

server” environment (Fig. 2). On the client side, containers

communicate with Docker daemons on the host. The

daemon and container can be installed on a single host and

both can be controlled remotely. The daemon and containers

communicate through the docker0 interface bridges (in

Linux). Docker architecture consists of three components:

Docker images, registers, and containers. The Docker image

is a read-only template used for deployment of a Docker

container. The image may contain, e.g., an operating system,

a web server, or a mail server with additional pre-installed

settings [4], [5].

Fig. 2. Docker Architecture.

Containers are the form of application encapsulation with

their specific dependencies. At first glance, it may seem to

be a lightweight form of a virtual machine. Containers must

have an isolated operating system that can be used to run

applications. In various cases, containers have several

benefits, which makes it difficult to use traditional VMs in a

similar way, if not impossible. Containers share resources

with a host operating system that makes their size more

efficient. Containers can be started and stopped in a fast

way. DevOps engineers can simultaneously run many

containers on a single host machine, rather than using

virtual machines alone [5].

Containers also have advantages for end-users and

developers in cloud deployment. Container users can

download and run complex applications without

configuration and installation issues. Application developers

can avoid containers problems caused by user environments

72

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022

and accessibility dependence capacity [5]. More

importantly, the main goals of virtual machines and

containers are different. VM aims to completely reproduce

another computer environment, whereas container

environments aim to make applications portable and

independent. For instance, containers can operate with the

same OS that is loaded in physical memory, can

communicate between sockets, bridges, etc. Also, containers

have faster OS boot, compared to VM, file sharing is easy to

implement, and lower memory usage to avoid additional

storing.

IV. NETWORK SIMULATOR NS-3 AND 802.11AH MODULE

The kernel of simulation and C++ programming models

are contained in a discrete-event network simulator ns-3.

The network simulator ns-3 is designed as a library that can

be dynamically or statically linked to the C++ library. The

network defines the simulation. The simulator software can

export all its APIs to Python programming language and

allows importing Python libraries to ns-3 modules [6], [7].

The discrete-event network simulator ns-3 has been under

development for several years. Each of its latest versions is

supplemented by several modules that require various

research protocols and IEEE standards. In the latest ns-3

version, developers and research staff can simulate an IEEE

802.11ax standard on a physical layer. This makes it easier

to use different research protocols from IEEE and ITU

standards.

A simulator consists of a kernel and its components,

including common protocols, devices, and environmental

models. The simulation kernel is specified in the application

source code. Packets are fundamental objects of the

simulator and are implemented over the network in the

application source code. The main simulation modules

(kernel and network) are intended to be independent and

include a common simulation kernel that can be used by

different types of networks. One more feature of the ideal

simulation is its mobility. It holds static paths, signal

handling distribution of points or packages, etc. Mobility

and the internet can communicate with each other through

packages that switch to all headers of the Internet protocol

(e.g., IPv4 or MAC). The MAC header contains the source

of the sender’s IP address, the volume of transferred data

[6], [7].

In addition to the above-mentioned network simulator

kernels, the developers added two more modules. These

modules supplement the main C++-based API. The discrete-

event network simulator ns-3 can directly access all APIs.

The fact is that the ns-3 simulator can write two APIs (or

their combination) - and this is a fundamental aspect. Also,

the focus can be made on two basic objects: Node and

NetDevice. The basic objects of the network devices are the

main sources of network emulation [6], [7].

The IEEE standards protocol 802.11ah mentioned before

(code name Wi-Fi HaLow) is the category of IoT devices

network and it combines the benefits of Wi-Fi and low-

powered wireless sensors of network communications

technology. The IEEE standard protocol 802.11ah is a

WLAN protocol with PHY and MAC layers, which can

operate in a 1 GHz frequency band (863 MHz–868 MHz in

Europe and 902 MHz–928 MHz in North America) [7], [8].

Frequency bands below 1 GHz are intended for

communications at a range of 1 to 3 kilometers and can

transmit data with rate of up to 100 Kbps; at the same time,

the maximum data transmission rate can reach 347 Mbps

with four spatial flows using one 16 MHz bandwidth

channel. Modulation schemes and coding rates for IEEE

standards are specified by MCS indexes, e.g., at 100 Kbps

of data transmission rate satisfactory throughput results can

be reached [7], [9]–[12].

The 802.11ah MAC layer of the IEEE standard protocol

introduces mechanisms such as hierarchical organization,

the header of the short MAC layer, Restricted Access

Window (RAW), Traffic Indication Map (TIM), Target

Wake Time (TWT), and Modulation and Coding Scheme

(MCS). The mechanisms described above support a limited

number of stations. The RAW function is the distribution of

station groups, by allowing one group to simultaneously

access the channel, thus reducing the probability of

collisions in networks [7], [8], [10]–[12].

Currently, the ns-3 simulator is supported by several

IEEE 802.11 standards, including 802.11a, 802.11b,

802.11g, 802.11n, and modern 802.11ac protocols. It is

composed of 4 main components:

 WifiChannel - physical part where data are transferred,

analytical approximation of the physical medium over

which data are transmitted, including propagation loss

model and delay model. The propagation loss model

describes the signal strength loss during transmission via

air and the propagation delay model describes the

transmission delay between two nodes.

 Physical Wi-Fi - physical part of the protocol, which

controls processes of sending frames and receiving them.

The PHY part of the IEEE 802.11ah module, where the

format of PLCP Protocol Data Unit (PPDU) frame is

defined, and frames are sent and received through the Wi-

Fi Channel. It consists of the WifiPhy/YansWifiPhy,

InterferenceHelper, and ErrorRateModel classes.

 MacLow - introduces RTS/CTS/DATA/ACK

transactions, distributed coordination function (DCF) and

enhanced distributed channel access (EDCA) functions,

packet queues, fragmentation, retransmission, and

transmission control.

 MacHigh - introduces management functions such as

beacon generation, zoning, pooling, and authentication

[6], [7], [9], [10], [12].

The main components of the discrete-event network

simulator ns-3 are two primary PHY layers and MAC

layers. The PHY components of the ns-3 simulator are parts

of the 802.11ah PHY layers:

 InterferenceHelper/ErrorRateModel - defines a new

batch type format, signal-to-noise ratio (SNR), and error

rate calculation based on physical packets header and

payload. ErrorRateModel packets for different models of

error rate calculation.

 WifiPhy - defines modulation and coding schemes from

MCS0 to MCS10 for channel bandwidth from 1 MHz to

16 MHz. The IEEE 802.11ah protocol standard uses

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022

different packet format. Some formats were introduced to

send and calculate the length of received packets in the

preamble, header, and data loads.

 Propagation Loss Model - defines the signal strength in

the wireless environment based on the distance between

the transmitter and the receiver [7], [12].

MAC layer model components IEEE 802.11ah currently

supporting the RAW model:

 MacHigh protocol - implements management functions

such as beacon generation, probing, association, fast

association, and part of RAW. It consists of the

ApWifiMac (Access Point (AP)) and StaWifiMac (non-

AP station) classes, which share a common parent class

RegularWifiMac.

 Double backup mechanism - the two-stage back-off

mechanism was implemented in the DcaTxop,

EdcaTxopN, and DcfManager classes, supporting both

Quality of Service (QoS) and non-QoS data

transmissions. The start and termination of the two-stage

back-off are managed by the DcaTxop and EdcaTxopN

classes by sending instructions to the DcfManager class,

which is changed to be able to store and restore back-off-

related values [7], [12].

V. USED EXPERIMENTAL MEASUREMENTS SIMULATIONS

FOR HARDWARE AND WIRELESS NETWORKS

To examine the state of the wireless network simulation,

the auxiliary tools from previous sections must be used. All

practical measurements of wireless communications

network performance may be divided into two categories,

system and operation measurements. System measurements

are needed to evaluate or assess new network equipment

(access points, switches, routers, servers, or host

computers), and twisted pair cables with predefined

technical type. The second type of measurement (operation)

is performed during the cable and hardware mounting

process. For example, during the setup of a router or switch

in a wireless network. Operation measurements are needed

to prevent collisions, accidents and to implement control.

The case of accident measurements involves cable and

hardware quality testing at local points. Preventive and

control measurement tasks can be performed by hardware

components, applications, and operational measurements

[13]–[15].

The experimental part includes the development of a

virtual wireless communications network testbed. During

the experiment, a network topology was designed for

performing the tasks. This network topology was

implemented in two steps. The first step was implemented

as a virtual machine with discrete-event network simulator

ns-3 and an IEEE 802.11ah standard protocol module. The

second step of an experimental part was implemented as a

Docker container. It was developed based on defined tasks

to evaluate data throughput for specified number of

workstations, considering specified modulation and coding

schemes according to IEEE 802.11ah standard protocol

module for a network simulator ns-3.

Measurements were conducted for both experiments

(virtual machine and containers), and the results must be

compared according to specific parameters (simulation time

and data transmission rate). The simulation time shows the

operation speed from the access point to a limited number of

stations. The processing time of one station was in the range

of 10 to 60 seconds. All inaccuracies need to be assessed

and results need to be obtained for different data

transmission rates.

The figures below display methods of measurement,

which were performed in two steps on the same host

machine. The first step (Fig. 3) uses a computer with an

installed hypervisor (VirtualBox) software. The VM

operating system is Linux with additional software installed

and configured in the hypervisor, i.e., the ns-3 discrete-

event network simulator with the required IEEE 802.11ah

protocol standard module and the connection setup between

a virtual machine and host computer via the SSH protocol.

Fig. 3. First step of network scheme with virtual machine and network

simulator ns-3 with built-in IEEE 802.11ah protocol standard module.

The second step (Fig. 4) of the network scheme is quite

difficult but at the same time also interesting as an

application.

Fig. 4. Second step of network scheme with discrete events in the ns-3 simulator built-in IEEE 802.11ah protocol module for Docker containers.

The first scheme was complemented by Docker daemon

and containers with Linux operating system and required

programs pre-installed, which were used in the first step

scenario. Three more containers with different IP addresses

have been added to the Docker Daemon. In these Docker

containers, a user or a developer can set up connections

between containers themselves, as well as between

containers and the Docker daemon. This technology is

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022

called “Docker networking”. Docker includes support for

network containers via network drivers. In our case, all

containers were connected to virtual “bridges.” Using the

same principle as in normal networks, more tools had been

installed in containers to measure Wi-Fi HaLow parameters.

VI. EXPERIMENTAL WIRELESS NETWORK DATA RATE

MEASUREMENTS

In this section, the authors describe an experiment with

data rate measurements from a wireless network. The goal

was to determine the maximum number of stations capable

of simultaneous interruptions of operation or overloading of

the system, and the number of stations that can provide

optimal throughput. This work studies different standard

operating parameters of the IEEE 802.11ah protocol. Firstly,

for modulation and coding scheme, the 1 MHz and 2 MHz

bandwidth channels were used with 8 millisecond delay.

Secondly, the distance between stations and access points

was introduced by the parameter “rho” (its value was set at

50 meters). Thirdly, the next parameter used is a delay of

response between stations (beacons) - 0.1024 seconds or

1024 nanoseconds. The main parameter used during the

experiment was the number of stations. The experiment was

constantly in progress and a total of 256 stations were used.

It is the highest number of stations that can be processed by

a host and hypervisor with a virtual machine. In theory, an

even greater number of stations can be used, since the IEEE

802.11ah protocol standard can supply up to 8000 stations.

To provide more stations for the system, the host computer

with higher performance can be used with other operating

systems (e.g., CLI or GUI with low consumption of

resources), or cloud service servers (Amazon AWS) can be

used as well. First, check the modulation and coding

schemes selected in our experimental part and the

corresponding data rates for such cases. The IEEE 802.11ah

standard protocol is known to be based on orthogonal

frequency-division multiplexing (OFDM) modulation with a

maximum of four spatial flows using a single channel with a

bandwidth of 16 MHz. In this experiment, however, we

used 1 MHz and 2 MHz bandwidth channels for modulation

and coding schemes, and also only a single spatial flow. For

example, for the 2 MHz bandwidth channel, a Fourier

transform with 56 OFDM subcarriers was used: 52 data

subcarriers and 4 assisting subcarriers with a step of

31.25 kHz. Each of these subcarriers can be modulated by

one of the following modulation types: binary phase-shift

keying (BPSK), quadrature phase-shift keying (QPSK),

quadrature amplitude modulation (16-QAM, 64-QAM, and

256-QAM) [7], [8].

For different channel bandwidth values, IEEE 802.11ah

standard utilizes several types of modulation and coding

schemes, coding rates, and frequency channels. Table I lists

the supported data rates and their modulation and coding

schemes for different channel bandwidths [7].

TABLE I. IEEE 802.11ah STANDARD PROTOCOL MODULATION AND CODING SCHEME RESULTS AT 1 MHZ AND 2 MHZ FREQUENCY

CHANNELS.

MCS index Modulation type Coding rate 1 MHz channels 2 MHz channels

0 BPSK 1/2 0.3 0.65

1 QPSK 1/2 0.6 1.3

2 QPSK 3/4 0.9 1.95

3 16-QAM 1/2 1.2 2.6

4 16-QAM 3/4 1.8 3.9

5 64-QAM 2/3 2.4 5.2

6 64-QAM 3/4 2.7 5.85

7 64-QAM 5/6 3.0 6.5

8 256-QAM 3/4 3.6 7.8

9 256-QAM 5/6 4.0 -

10 BPSK 1/2 × 2 0.15 -

VII. MEASUREMENT OF EXPERIMENTAL WIRELESS

NETWORK DATA TRANSMISSION RATE IN VMS AND DOCKER

The experimental part has been performed in two

scenarios: virtual machines and Docker containers. The

simulation time and throughput of these technologies have

been compared, and some conclusions were made on the

technical part of these different technologies. It should be

noted that it is impossible to rely completely on hardware

and conclude that results are worse or better, since these

results are affected by a host computer. The measurements

were performed for different data transmission times (10 to

60 seconds of simulation time) for specified modulation and

coding schemes with 1 MHz and 2 MHz bandwidth

channels and single spatial flow. A different number of

stations (up to 256 stations) was selected. The purpose of

choosing a different number of stations was to explore how

quickly the stations can simulate in one RAW group. Let us

summarize experimental part results depending on

modulation and coding scheme and number of stations. The

analysis of obtained results was performed for all

measurements of the entire step with further plots and tables

obtained as a result (Tables II and III, Fig. 5).

The summary of obtained results shows that for small

number of stations (i.e., 2 stations) the network throughput

achieved value of up to 0.041 Mbps. If the hypothetical

situation is considered, when a small number of stations is

split into several groups, the network throughput of a small

number of stations can be improved. For the case of a larger

number of stations, the comparison was made for the results

of Virtual Machine and Docker containers. The performance

difference can be observed for a number of stations set to at

least 64. For example, for MCS9 scheme, the throughput of

the VMs was 0.592 Mbps and the throughput of the Docker

was 0.613 Mbps (Table IV). Docker containers show better

results not only for throughput tests, but also for simulation

time. This is affected by a large number of factors, such as

packet losses and defined modulation and coding scheme

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022

parameters, simulation and operating system parameters. In

addition, hardware performance is also a factor, in

particular, writing/reading speed.

TABLE II. COMMON RESULTS OF THROUGHPUT (T.) AND

SIMULATION TIME FOR VMS AT 1 MHZ.

MCS index

T. of 2

stations

[Mbps]

Sim.

Time

[s]

T. of 64

stations

[Mbps]

Sim.

Time

[s]

T. of 256

stations

[Mbps]

Sim.

Time

[s]

MCS0 0.041 2.3 0.178 63.3 0.145 240

MCS1 0.041 6 0.258 73.3 0.198 260

MCS2 0.041 5.3 0.313 153.3 0.251 513.3

MCS3 0.041 8 0.377 190 0.304 593.3

MCS4 0.041 8 0.446 223.3 0.375 593.3

MCS5 0.041 8 0.53 256.7 0.427 560

MCS6 0.041 8 0.555 203.3 0.449 503.3

MCS7 0.041 8 0.582 330 0.48 520

MCS8 0.041 8 0.58 300 0.466 495

MCS9 0.041 14.3 0.592 266.7 0.481 600

MCS10 0.041 6 0.102 123.3 0.098 320

TABLE III. COMMON RESULTS OF THROUGHPUT (T.) AND

SIMULATION TIME FOR DOCKER CONTAINERS AT 1 MHZ.

MCS index

T. of 2

stations

[Mbps]

Sim.

Time

[s]

T. of 64

stations

[Mbps]

Sim.

Time

[s]

T. of 256

stations

[Mbps]

Sim.

Time

[s]

MCS0 0.041 2.7 0.184 43.3 0.158 220

MCS1 0.041 4 0.262 73.3 0.21 206.7

MCS2 0.041 4.7 0.319 100 0.257 280

MCS3 0.041 6.7 0.39 140 0.306 300

MCS4 0.041 6 0.476 140 0.375 320

MCS5 0.041 8 0.532 160 0.431 320

MCS6 0.041 6 0.56 160 0.453 340

MCS7 0.041 6.7 0.593 153.3 0.479 326.7

MCS8 0.041 8 0.586 220 0.482 376.7

MCS9 0.041 12.7 0.613 233.3 0.487 400

MCS10 0.041 6 0.105 123.3 0.07 320

TABLE IV. COMMON RESULTS OF THROUGHPUT (T.) AND

SIMULATION TIME FOR VMS AT 2 MHZ.

MCS index

T. of 2

stations

[Mbps]

Sim.

Time

[s]

T. of 64

stations

[Mbps]

Sim.

Time

[s]

T. of 256

stations

[Mbps]

Sim.

Time [s]

MCS0 0.041 6 0.34 123.3 0.29 320

MCS1 0.041 4 0.458 73.3 0.369 196.7

MCS2 0.041 6 0.519 180 0.418 326.7

MCS3 0.041 8 0.55 220 0.459 420

MCS4 0.041 10.7 0.647 170 0.524 400

MCS5 0.041 10.7 0.681 170 0.55 400

MCS6 0.041 10.7 0.683 170 0.561 400

MCS7 0.041 10.7 0.703 223,3 0.579 433.3

MCS8 0.041 6 0.712 180 0.581 326.7

After performing the comparison, the results for the

Docker container simulation look better (Table V) than

those for the first step (VMs), where measurements were

made for a single virtual machine. In both cases the same

configuration was used; however, the plots clearly show that

throughput was better by 0.1 Mbps to 0.2 Mbps for higher

data transmission rate values. In a simulation, we may see

that OFDM modulation changes after 3 Mbps of throughput

and has an ideal level of packages sending without loss

compared to the first simulation. It can be argued that

energy consumption was also low for Docker container

simulation, compared to the first scenario with VM, because

it was less affected (Fig. 6). Assuming the power

consumption of the single virtual station in the case of the

virtual machine per station packet was 50 mJ to 100 mJ, the

virtual station energy consumption of the Docker container

for each station can be estimated as 30 mJ–80 mJ per station

packet. Developing a modern device considers lower energy

consumption, since it positively affects the performance of

the device.

TABLE V. COMMON RESULTS OF THROUGHPUT (T.) AND

SIMULATION TIME FOR DOCKER CONTAINERS AT 2 MHZ.

MCS index

T. of 2

stations

[Mbps]

Sim.

Time

[s]

T. of 64

stations

[Mbps]

Sim.

Time

[s]

T. of 256

stations

[Mbps]

Sim.

Time

[s]

MCS0 0.041 6 0.34 123.3 0.29 320

MCS1 0.041 4 0.462 73.3 0.373 196.67

MCS2 0.041 6 0.534 180 0.421 326.67

MCS3 0.041 6 0.584 140 0.465 320

MCS4 0.041 10.7 0.651 170 0.528 353.33

MCS5 0.041 10.7 0.705 160 0.566 340

MCS6 0.041 10 0.704 140 0.578 276.67

MCS7 0.041 10.7 0.709 113.3 0.585 260

MCS8 0.041 6 0.718 180 0.588 326.7

(a)

(b)

Fig. 5. Total throughput results of 64 and 256 stations with the MCS

scheme at 1 MHz for (a) VMs and (b) Docker containers.

(a)

(b)

Fig. 6. Total throughput results of 64 and 256 stations with MCS scheme at

2 MHz for (a) VMs and (b) Docker containers.

VIII. RESULTS

The analysis of obtained results revealed that the Docker

container configuration was found to show superior results.

The experimental part includes measurements for each MCS

diagram module for a specified number of stations. Both

76

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 28, NO. 3, 2022

steps used MCS schemes with 1 MHz and 2 MHz

bandwidth channels, and the number of stations was up to

256. During the simulation, two scenarios have been set for

the same configuration parameters (simulation time, station

interval, station range). The paper also evaluates energy

consumption of a single station during the simulation and

the amount of power missing to implement the best

operation of all stations. There are two options of IEEE

802.11ah module modulation and coding schemes: 1 MHz

bandwidth with 8 ms operating interval and 2 MHz

bandwidth with the same operation interval. Unfortunately,

it was not possible to evaluate many available frequency

bandwidths for the IEEE 802.11ah standard protocol with

different MCS schemes (4 MHz, 8 MHz, 16 MHz, and

40 MHz). Still, it is expected that for increasing bandwidth,

the data flows or throughput parameter indicators will also

depend more on number of stations.

Summarizing the results of simulations for both

simulation scenarios, it can be concluded that for 1 MHz

bandwidth, both virtual machine and Docker containers

show relatively equivalent results for number of stations in

chosen range. The results are different only for the MCS10

scheme. When the number of stations is increased to 64, it

can be concluded that the coding rate and modulation type

for each scheme also adversely affect results for parallel

internal processes. A similar situation was also observed for

the 2 MHz bandwidth. This effect occurs because the

substantial number of stations can still be operated with

5.2 Mbps data rate and the obtained results are not so

satisfactory for throughput. The wider bandwidth of the

channel provides a rapid data rate and elevated transmission

quality.

IX. DISCUSSION

The problem of this paper is the comparison of virtual

technologies and their throughout. Which technologies are

better suited for simulation? Would a larger number of

stations than in the paper’s results affect throughput results

for wider frequency bandwidth channels (20 MHz or

40 MHz)?

X. CONCLUSIONS

According to the work completed during the experimental

part, the testbed was designed, and it supports the

connection between hypervisor and host, as well as

connection between virtual machine environments and

Docker containers. All connections were proven by using

the SSH protocol to connect from the host to a virtual

machine using PuTTY.

The main conclusion on the simulation results is related

to selection between Docker containers and VMs. If the

priority is to use a better and faster architecture, it is better

to use containers, since the simulation is managed faster

compared to a single hypervisor. It can be seen that in the

case of MCS8, where the encoding speed is lower (about

3/4 and 5/6), the results of the throughput and simulation

time are better for 64 stations in containers, rather than

VMs.

RELATED WORKS

The following work has been used for comparison: “Wi-

Fi HaLow for the Internet of Things: An up-to-date survey

on IEEE 802.11ah research” (2021). It is necessary for

results comparing and to have a full-view abstraction for

this paper.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] M. U. Farroq, M. Waseem, S. Mazhar, A. Khairi, and T. Kamal, “A

review on Internet of Things (IoT)”, International Journal of

Computer Applications, vol. 113, no. 1, 2015. DOI: 10.5120/19787-

1571.

[2] M. K. Mishra and D. Goyal, “Security analysis in open-source Linux

network”, International Journal of Engineering Research &

Technology (IJERT), vol. 2, no. 8, pp. 1808–1812, 2013.

[3] Oracle VM VirtualBox: User Manual, Oracle Corporation, 2020.

[4] A. Mouat, Using Docker: Developing and Deploying Software with

Containers. O’Reilly Media, 2016.

[5] J. Mulerikkal, “Evaluation of Docker containers based on hardware

utilization”, 2020.

[6] ns-3: Network Simulators – ns-3 Manual, ns-3 project, 2020.

[7] L. Tian, S. Santi, A. Seferagic, J. Lan, and J. Famaey, “Wi-Fi HaLow

for the Internet of Things: An up-to-date survey on IEEE 802.11ah

research”, Journal of Network and Computer Applications, vol. 182,

art. 103036, 2021. DOI: 10.1016/j.jnca.2021.103036.

[8] D. Perdana, S. Hafidzah, and B. Erfianto, “Analytical study on IEEE

802.11ah standard impact of hidden node”, International Journal of

Intelligent Engineering & Systems, vol. 14, no. 3, 2021. DOI:

10.22266/ijies2021.0630.44.

[9] M. P. Clark, Data Networks, IP and the Internet: Protocols, Design

and Operation. John Wiley & Sons, Ltd, 2003. DOI:

10.1002/047086804X.

[10] IEEE Standard for Information technology — Telecommunications

and information exchange between systems — Local and metropolitan

area networks — Specific requirements, Part 11: Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY)

Specifications, IEEE Computer Society, 2007.

[11] S. Banerji and R. S. Chowdhury, “On IEEE 802.11: Wireless LAN

technology”, International Journal of Mobile Network

Communications & Telematics (IJMNCT), vol. 3, no. 4, 2013. arXiv:

1307.2661. DOI: 10.5121/ijmnct.2013.3405.

[12] L. Tian, S. Latre, and J. Famaey, “An IEEE 802.11ah simulation

module for ns-3”, University of Antwerp, 2016. DOI:

10.13140/RG.2.1.1378.8244.

[13] Ģ. Ivanovs, G. Lauks, G. Liberts, and J. Poriņš, Šķiedru Optikas

Izmantošana Vietējās Sakaru Sistēmās. Riga Technical University,

Telecommunications Institute, Riga, 2004.

[14] И. Г. Бакланов, Технологии Измерений в Современных

Телекоммуникациях. Эко-Трендз, 1998.

[15] D. Aleksandrovs-Moisejs, “Šķiedru optiskās pārraides līnijas

vājinājuma novērtējums ar OTDR”, B.S. thesis, Riga Technical

University, Telecommunications Institute, 2019.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

77

