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1Abstract—Deep neural network-based diagnostic tools have 

gained state-of-the-art performance in the medical field in 

recent years. Diagnostic accuracy has become very critical for 

medical treatments. This paper proposes a simple and novel 

deep learning-based system for the analysis of paranasal 

sinuses conditions. In this work, we focus on analysing the 

paranasal sinuses on CT images automatically, providing 

physicians with high-accuracy diagnosis. The proposed system 

enables one to reduce the number of images to be searched in a 

CT scan for a patient automatically, and also it provides 

automatic segmentation for marking and cropping the 

paranasal sinuses region. Thus, the proposed system 

significantly decreases the data required in the training phase 

with a gain in computational efficiency while maintaining high-

accuracy performance. The proposed algorithm also makes the 

required segmentation automatically without manual cropping 

and yields outstanding performance on detecting abnormalities 

in the sinuses. The proposed approach has been tested on real 

CT images and achieved an accuracy rate of 98.52 % with a 

sensitivity of 100 %.  

 
 Index Terms—Convolutional neural network; Deep 

learning; Medical imaging; Paranasal sinus.  

I. INTRODUCTION 

In the healthcare industry, many medical images are 

produced and then used for diagnosis. Medical imaging 

technologies enable professionals to view the inner 

structures of the body for diagnosis, monitoring, or treating 

medical conditions. There is an ever-increasing amount of 

medical image data and the rate of growth itself is 

increasing. In recent years, most of the primary data 

produced in medical imaging is now digital. Therefore, the 

need for effective digital medical image analysis has 

increased in the medical community.  

The new technologies such as deep learning algorithms 

have remarkable potential in the field of medical imaging. 

Deep learning models can provide better analyses of digital 

medical images and thus may serve as a tool for detection of 

abnormalities or diagnosis of diseases. Recent applications 

of deep learning in the field of medical imaging have been 

demonstrated, such as diagnosis of diabetic retinopathy, age-

related macular degeneration, and glaucoma in the field of 

ophthalmology, diagnosis of lung nodules or lung cancer in 

the field of respiratory imaging, and diagnosis of breast 

cancer in breast imaging [1]. 

Paranasal sinuses are air-filled spaces that surround the 
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nasal cavity. There are four air-filled spaces named as 

“ethmoidal”, “sphenoidal”, “frontal”, and “maxillary” 

sinuses. The sinuses may become infected when blocked 

and filled with fluid. In the case of infection and 

inflammation of the mucosal lining of the paranasal sinuses, 

the condition is called “sinusitis” or “rhinosinusitis” and this 

condition is considered a common ailment [2]. Sinusitis can 

be acute or chronic. The Centers for Disease Control and 

Prevention (CDC) reported that the total number of adults 

with diagnosed sinusitis is 28.9 million in 2018 and the 

percent of adults with diagnosed sinusitis is 11.6 % [3]. 

Chronic rhinosinusitis affects around 10 %–12 % of the 

European population [4]. 

Technological advances in medical imaging techniques 

such as high-resolution computed tomography (CT) and 

magnetic resonance imaging (MRI) scans have improved the 

analysis and evaluation of anatomy and pathology of the 

paranasal sinuses. CT scans allow the details of the osseous 

anatomy to be seen, and MRI scans give the details of the 

soft tissues. Although both provide essential information for 

the interpretation and treatment of various paranasal sinus 

pathologies, CT scan should always be considered the first 

choice in sinonasal imaging, and MRI scan is treated as 

supplementary to CT scan [5]. 

A simple and efficient system that automatically analyses 

the conditions of the paranasal sinuses on CT images and 

that supports physicians in otolaryngology with a high-

accuracy diagnosis is still lacking. The article presents the 

original deep learning-based system for the automatic 

analysis of paranasal sinuses conditions. The proposed 

system is the first fully automated algorithm that utilizes a 

deep learning approach for the analysis of the conditions of 

the paranasal sinuses to the best of our knowledge. The 

proposed algorithm primarily decreases the necessary and 

crucial data during the training phase and maintains a simple 

automatic segmentation with a considerable improvement in 

computational cost and complexity. As a result, by reducing 

the number of images to be analysed on a CT scan for a 

patient and by providing automatic segmentation for 

marking and cropping the paranasal sinuses region, the 

proposed system performs the required segmentation 

automatically without manual cropping and gives 

remarkable accuracy in detecting abnormalities in the 

paranasal sinuses. 

In this paper, the purpose of our study is to develop a 

deep learning-based algorithm for the analyses of the 
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paranasal sinuses on CT images. The proposed system 

consists of two main stages: the first stage involves an 

image processing algorithm for automated segmentation of 

paranasal sinuses on CT images, and then the second stage 

is for determining the abnormalities on the sinuses. In the 

second stage, we use convolutional neural networks (CNN) 

to train the system.  

The rest of the paper is organized as follows. Section II 

provides an overview of the literature on recent related 

works. The data preparation, including data collection and 

pre-processing stages, is given in Section III. The 

segmentation of the paranasal sinuses is presented in Section 

IV. In Section V, we introduce a description of the proposed 

CNN architecture. The experimental results are provided in 

Section VI. The proposed system performance is discussed 

in Section VII. Finally, the last section, Section VIII, 

concludes the work. 

II. RELATED WORKS 

In medical imaging, one of the most encouraging and 

attractive hot topics today is deep learning. Recent 

challenges in deep learning showed that it has the capacity 

to revolutionize medical diagnostics [1], [6], [7]. Deep 

learning is likely to play a critical role in image-heavy 

specialties such as otolaryngology for the detection and 

classification of disease. Recent studies in the related field 

of otolaryngology are summarized below. 

Deep learning algorithms have been proposed to identify 

details of bone structures from CT scans [8], [9]. Heutink et 

al. [8] proposed a deep learning framework to automatically 

segment and measure the human cochlea in CT images, and 

stated that the algorithm provided accurate measurements of 

cochlear anatomy. Zhang, Wang, Noble, and Dawant [9] 

presented a deep CNN-based algorithm for the localization 

of multiple landmarks in head CTs and to classify CT 

images in terms of their content. They reached 99.5 % 

classification accuracy. 

Deep neural networks have also been used to investigate 

the anatomy of nasal cavities and paranasal sinuses. 

Darknet-19 and You Only Look Once (YOLO) had been 

used for automatic detection of nasal cavities and paranasal 

sinuses in [10]. An automated paranasal sinus segmentation 

method based on a fully convolutional network (FCN) with 

a probability atlas [11] has been proposed. The segmentation 

accuracy (Dice coefficient) was found to be about 0.83.  

Xu, Wang, Zhou, Liu, Jiang, and Chen [12] proposed an 

algorithm for automatic segmentation of the maxillary sinus 

(MS) by combining the Visual Geometry Group (VGG) 

network and the improved V-Net. The VGG network was 

used to label CT slices containing the MS region, and the 

improved V-Net functioned as a segmentation unit. As a 

classifier unit that decides whether CT slices contain MS 

region or not, the VGG network had a classification 

accuracy of 97.04 ± 2.03 %. In the segmentation unit, the 

segmentation accuracy (Dice coefficient) was 94.40 ± 

2.07 %, the Iou (intersection over union) was 90.05 ± 

3.26 % and the precision was 94.72 ± 2.64 %. 

Ren, Li, Tian, and Li [13] have applied a deep learning 

architecture for the automatic recognition of inverted 

papilloma (IP) and nasal polyp (NP) on CT images. The 

proposed end-to-end deep learning model consists of two 

parts: first is for pre-classification, and the second separate 

networks for differentiating IP and CP. They achieved 

89.30 % accuracy in classification.  

Jung, Lim, Lee, Cho, and Song [14] have developed an 

active learning framework for maxillary sinus segmentation. 

They used a customized 3D nnU-Net on cone-beam 

computed tomography (CBCT) to segment maxillary sinus 

into the maxillary bone, air, and lesion. Humphries et al. 

[15] presented a CNN method for fully automatic 

assessment of paranasal sinus opacification on CT images 

with truly objective volumetric quantitation of sinonasal 

inflammation. They expressed that the proposed method 

provided volumetric opacification scores that are consistent 

with Lund-Mackay (LM) visual scoring on test images that 

involve various degrees of sinonasal inflammation.  

Parmar et al. have used a CNN algorithm to identify 

middle turbinate pneumatisation on coronal sinus CT images 

[16]. They used Inception-V3 model transfer learning and 

that re-trained the classification layer. They found a 

diagnostic accuracy of 81 % (95 % confidence interval: 

73.0 % to 89.0 %) with an area under the curve of 0.93. 

Huang et al. [17] performed a study to differentiate the 

location of the anterior ethmoidal artery adhered to the skull 

base or within a “mesentery” of the bone on sinus CT scans 

using the Inception-V3 CNN model. They achieved a total 

accuracy of 82.7 % (95 % confidence interval = 77.7–87.8), 

a kappa statistic of 0.62 and an area under the curve of 0.86. 

III. DATA PREPARATION 

A. Data Collection 

The study protocol was approved by the ethics committee 

of our institution, Gaziantep University. All CT scans were 

acquired at our university hospital. Experiments were 

conducted with coronal CT scans from 140 patients. The CT 

scans were reviewed and interpreted by the physicians, and 

then the CT scans were classified into two parts: normal 

sinuses and abnormal sinuses conditions. Totally 72 patients 

CT scans were used for the training phase and 68 patients 

CT scans were used for the testing phase in our study. 

B. Pre-Processing 

In the initial phase, the training dataset was prepared. For 

this purpose, the coronal CT scan images for the training 

phase were selected for each patient. In the row CT scans 

for the patients, there were different amounts of images for 

each. Five images for each patient were chosen. To identify 

abnormalities in the paranasal sinuses and differentiate them 

from normal ones, the position of the head on the images 

needs to be properly chosen.  

The pivot image is selected first. The pivot image refers 

to the full view from the front of the head. Coronal CT scans 

contain a variable number of images for each patient. 

Histograms of the images are computed for each image in 

order in a CT scan then the differences between the 

successive images based on histogram evaluations are 

obtained. It is expected that the histograms are similar in the 

neighborhood of the pivot image. Then the candidate images 

for pivot selection are labeled. Next, the pixel intensities 

averages and standard deviations are evaluated for the 

candidate images. Those feature vectors are used for precise 

estimation of the pivot image. Then two before and two after 
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are selected from consecutive images. Figure 1 shows a 

representation of selected images for a patient obtained after 

the pre-processing stage. The middle image appearing in the 

figure is the pivot image. 

 
Fig. 1.  A representation of selected CT images for a patient in the 

preparation stage of the training dataset. The middle image is the pivot 

image. 

IV. SEGMENTATION 

To format and make row RGB CT images more 

consistent in the training phase, paranasal sinus 

segmentation is the next stage after obtaining 5 selected 

images for each patient. In segmentation for the training 

dataset, images are first converted to binary image format. 

In this conversion, a luminance threshold is estimated first. 

All row CT images are analysed, and corresponding global 

thresholding values are evaluated. The Otsu’s method [18] is 

used to find a global threshold for each CT image.  

The Otsu’s method is an iterative algorithm to find the 

global threshold value where the sum of the foreground and 

background spreads is at its minimum. In the proposed 

segmentation algorithm, the universal threshold value was 

found by averaging the global threshold values. The 

universal threshold value was computed and finally set to 

0.2.  

The resulting thresholded images are then filtered by the 

average filter to remove small-sized areas and noises. The 

images are then processed along vertical and horizontal runs 

to locate the paranasal sinus region. The limit pixel 

coordinate points to label the rectangular area containing 

paranasal sinuses are selected, and this region is cropped. 

Finally, the size of the images is adjusted to a fixed value. 

Bicubic interpolation is used to resizing the images to the 

fixed value. In the resized image, the output pixel value is a 

weighted average of pixels in the nearest 4-by-4 

neighborhood. It was specifically set to 225×300.  

The segmentation operation is illustrated in Fig. 2. The 

image on the left is one of the selected row CT images, the 

middle is thresholded and filtered, and the image on the 

right is the cropped image. 

 
                          (a)                              (b)                              (c)                       

Fig. 2.  Segmentation illustration for the preparation of training dataset: (a) 

row CT image, (b) thresholded and filtered form, and (c) cropped image. 

In normal operations (testing phase), the segmentation 

algorithm is the same as in the training phase. All the 

defined operations are performed automatically.  

V. THE PROPOSED CNN ARCHITECTURE 

The proposed algorithm is intended to analyse and 

classify the conditions of the paranasal sinuses into two 

parts: normal sinus conditions and abnormal sinus 

conditions. Therefore, the problem reduces to a 

classification problem. We propose a simple CNN 

architecture for deep learning classification. 

The Convolutional Neural Network (CNN) is a type of 

deep neural network inspired by the biological structure of a 

visual cortex of the brain and that it tries to imitate how the 

visual cortex of the brain processes and recognizes the 

visual data. Thus, CNN architectures are commonly and 

specifically applied to analyse visual imagery. In deep 

neural network architectures, involving fully connected 

neurons, the number of adjustable parameters probably 

increases quickly if the size of the input is becoming larger. 

CNN architecture, as a candidate solution, can reduce the 

number of adjustable parameters with the reduced number 

of connections, shared weights, and downsampling. A CNN 

can do this job by the help of multiple layers, including 

convolutional layers, pooling layers, and fully connected 

layers. The proposed CNN architecture is summarized in 

Table I.  

TABLE I. PROPOSED CNN ARCHITECTURE. 

CNN Layers with specifications: 

InputLayer (Image size is 225×300 with grayscale image format) 

ConvolutionalLayer (Filter size is 3×3 and the number of filters is 8) 

BatchNormalizationLayer 

ReLULayer 

MaxPoolingLayer (Pool size is 2×2) 

ConvolutionalLayer (Filter size is 3×3 and the number of filters is 16) 

BatchNormalizationLayer 

ReLULayer 

MaxPoolingLayer (Pool size is 2×2) 

ConvolutionalLayer (Filter size is 3×3 and the number of filters is 32) 

BatchNormalizationLayer 

ReLULayer 

FullyConnectedLayer (Output size is 2) 

SoftmaxLayer 

ClassificationLayer 

 

The first layer in the proposed architecture is the image 

input layer which feeds the network with 2-D images and 

makes data normalization. Then, a 2-D convolutional layer 

is placed for applying sliding convolutional filters to the 

input. To speed up training, a batch normalization layer is 

used between the convolutional layer and the ReLU layer. 

The next activation layer, the ReLU layer, performs a 

threshold operation on each element of the input, where any 

value less than zero is set to zero. Then a max pooling layer 

is set to perform downsampling and computing the 

maximum of each region. Then the convolutional layer with 

doubling the filters, the normalization layer, the ReLU layer, 

and the max pooling layer are followed. Next, again a 

convolutional layer with tripling filters, normalization layer, 

and ReLU layer are placed. Then a fully connected layer is 

inserted to connect the neurons between the layers. This 

layer consists of weights and biases and that the layer 

performs multiplication of the inputs by the weights and 

then addition of biases. Next, a softmax layer is placed 

which applies a softmax function to the input. Finally, a 

classification layer is placed and it computes the cross 

entropy loss for the two-class classification problem. 

Hyperparameters optimization is done manually. 

Specifically, in both convolutional layers and pooling layers, 

filter sizes, number of filters, and pool sizes are adjusted 

with the random search. The best training and validation 

accuracy values are obtained with the proposed CNN 
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architecture. 

VI. PERFORMANCE EVALUATION 

A. Performance Evaluation Measures 

The output of the proposed system is set to a decision or 

prediction that is labeled as either a “normal sinus 

condition” or an “abnormal sinus condition”, so this process 

is viewed as a binary classification problem. Thus, in this 

study, the performance of the system is represented in a 

confusion matrix attached with accuracy, precision, 

sensitivity (recall), specificity, and F1 scores.  

The confusion matrix is a way to visualize and summarize 

the performance of a classification problem. Figure 3 

demonstrates the confusion matrix. In this study, TP is the 

test result that shows the number of test samples that have 

been correctly labeled as normal sinus condition, FP is the 

test result that determines the number of test samples that 

have been erroneously identified as normal sinus condition, 

FN is the test result that indicates falsely missed normal 

sinus conditions, and TN represents the number of test 

samples estimated as abnormal sinus condition where they 

are actually abnormal sinus conditions. 

 
Fig. 3.  Confusion matrix. 

The related performance metrics, including accuracy, 

precision, sensitivity (recall), specificity, and F1 scores, are 

calculated as shown below: 
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B. Experimental Results 

To evaluate the performance of the proposed system, a 

series of experiments was conducted using a variety of CT 

images. All experiments were performed using MATLAB 

R2020b and a computer with an Intel Pentium processor at 

1.60 GHz and 4 GB of memory. The experiments include 

both the training and the testing phases and were conducted 

with coronal CT scans from a total of 140 patients, 72 for 

the training phase and 68 for the testing phase.  

For the training phase, the CT scans of 72 patients were 

first labeled as “normal sinuses conditions” and “abnormal 

sinuses conditions” by experienced physicians and then the 

CT scans were classified as normal and abnormal. As 

described in the pre-processing stage section, five images, a 

pivot and four more images in its neighborhood, for each 

patient, were chosen. Thus, 360 images were used for 

training. Figure 4 shows an example of training dataset 

members labeled as “normal” and similarly, Fig. 5 illustrates 

an example of training dataset members labeled as 

“abnormal” obtained after pre-processing stage. The images 

in the middle positions are the selected pivot images and the 

others are images in the right and left neighborhoods of the 

pivot images. 

 
Fig. 4.  An example of members of the training dataset labeled as “normal”. 

The image in the middle is the pivot image, and the others are two before 

and two after images in the left and right neighborhoods of the pivot image. 

 
Fig. 5.  An example of members of the training dataset labeled as 

“abnormal”. The image in the middle is the pivot image, and the others are 

two before and two after images in the left and right neighborhoods of the 

pivot image. 

After the pre-processing stage, segmentation was done to 

obtain and then crop the paranasal sinuses region on each 

selected image. In the final stage, the sizes of the cropped 

images were adjusted to a fixed value, which is 225×300. 

Some examples of images after segmentation stage are 

given in Fig. 6 and Fig. 7. Image samples representing the 

region of interest (i.e., paranasal sinuses region) labeled as 

“normal” are presented in Fig. 6. and image samples labeled 

as “abnormal” are represented in Fig. 7, respectively. 

Segmentation contains thresholding for RGB to binary 

conversion, filtering by the average filter to remove small-

sized areas and noises and cropping the paranasal sinuses 

region. 

 
Fig. 6.  Image samples after the segmentation stage representing the region 

of interest (i.e., the paranasal sinus region) labeled as “normal”.  

 
Fig. 7.  Image samples after the segmentation stage representing the region 

of interest (i.e., the paranasal sinus region) labeled as “abnormal”. 

The stochastic gradient descent with momentum (SGDM) 

optimizer with a 0.01 initial learning rate was used to update 

the network parameters in the training stage of the proposed 

architecture. 

For testing the proposed system, coronal CT scans 

belonging to 68 patients were used. The pre-processing 

stage was applied to the test CT scans and five CT images 

were selected for each. The selected images are then 
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automatically segmented to produce more appropriate test 

images to analyse the conditions of the paranasal sinuses. 

The test CT scans were also reviewed and interpreted by 

experienced physicians to compare the results obtained from 

the proposed system. 32 patient images were labeled as 

“normal” and the rest 36 images of 68 were labeled as 

“abnormal”. 

In the first phase of the experiments, the system was 

tested for all images selected for each patient individually. 

Therefore, 68 × 5 = 340 images were tested and their 

prediction results were recorded. The corresponding 

outcome results and performance indexes were listed in 

Table II and Table III, respectively. 

TABLE II. OUTCOME RESULTS OF PREDICTION WHEN IMAGES 

ARE TAKEN INDIVIDUALLY. 

 TP TN FN FP 

160 images labeled as “normal” 148  12  

180 images labeled as 

“abnormal” 
 150  30 

Totally 340 images 148 150 12 30 

TABLE III. EVALUATION INDEXES WHEN IMAGES ARE TAKEN 

INDIVIDUALLY. 

Accuracy 87.64 % 

Precision 83.14 % 

Sensitivity 92.50 % 

Specificity 83.33 % 

F1 Score 87.57 % 

 

In the second phase of the experiments, the performance 

of the system was measured by combining the individual 

prediction results of every selected image of each patient. 

The majority decision rule was applied for decision fusion. 

Within five individual predictions, the majority vote is taken 

as the common decision.  

The experimental results and the values of the 

performance indexes with combining the individual 

decisions by the majority rule are given in Table IV and 

Table V, respectively. 

TABLE IV. OUTCOME RESULTS OF PREDICTION WHEN 

MULTIPLE IMAGES DECISIONS ARE FUSED. 

 TP TN FN FP 

32 patients CT images labeled as 

“normal” 
32  0  

36 patients CT images labeled as 

“abnormal” 
 35  1 

Totally 68 patient CT images 32 35 0 1 

TABLE V. EVALUATION INDEXES WHEN MULTIPLE IMAGES 

DECISIONS ARE FUSED. 

Accuracy 98.52 % 

Precision 96.96 % 

Sensitivity 100 % 

Specificity 97.22 % 

F1 Score 98.45 % 

VII. DISCUSSION 

In the first stage of the experiments, when the system was 

tested for each selected image of each patient individually, it 

was observed that Type II Error (False Negatives) was 

comparatively low, while Type I Error (False Positives) was 

high.  

When the majority rule was applied in the second stage of 

the experiments, it was demonstrated that Type II Error was 

eliminated and that Type I Error was diminished. 

When comparing Table III and Table V, it was seen that 

when the selected images individual decisions were fused by 

the majority rule, all performance metrics became higher.  

To see the comparative performance of the proposed 

method, previously studied approaches were investigated 

but it was seen that there was no direct related study in the 

literature. On the other hand, somewhat similar studies are 

mentioned here.  

In [12], automatic segmentation of maxillary sinus (MS) 

was proposed by combining the VGG network and the 

improved V-Net. The proposed algorithm reached a 

classification accuracy of 97.04 ± 2.03 % and a 

segmentation accuracy (Dice coefficient) of 94.40 ± 2.07 %. 

Comparing our approach with this work, our proposed 

method makes automatic segmentation of the paranasal 

sinus region with perfect accuracy.  

In [13], a deep learning framework has been introduced 

for automatic recognition of inverted papilloma (IP) and 

nasal polyp (NP) on CT images. It was declared to reach 

89.30 % accuracy in classification. When compared our 

method with this study, our method outperforms with an 

accuracy of 98.52 % in classifying the conditions of the 

paranasal sinuses. 

Another study [19] related to automatic recognition and 

volume calculation for the inferior turbinate and maxillary 

sinus using image processing techniques has been presented. 

It was found that the accuracy and sensitivity results on the 

recognition stage for the inferior turbinate and the maxillary 

sinus were 96.3 % and 95.1 %, respectively. Our method 

achieved perfect recognition of CT images related to the 

paranasal sinus.  

VIII. CONCLUSIONS 

In this study, we propose an approach for the analyses of 

the paranasal sinuses conditions on CT images. The 

proposed approach automatically reduces the number of 

images in a CT scan and then makes automatic segmentation 

for cropping the required region of interest (i.e., paranasal 

sinuses region). The proposed system significantly reduces 

the data in the training phase while maintaining high-

accuracy performance. 

The experiments conducted have demonstrated that the 

proposed system yields outstanding performance in 

detecting abnormalities in the sinuses. The proposed 

approach has been tested on real CT images, and it is shown 

that with the majority rule on the final decision stage, we 

achieved an accuracy rate of 98.52 % and a sensitivity of 

100 %. The method proposed also delivered 96.96 % 

precision, 97.22 % specificity, and 98.45 % F1 score. As a 

future study, we will try to adapt the proposed approach to 

the diagnostic investigations of some specific diseases. 
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