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1Abstract—Many approaches about the planning and 

operation of power systems, such as network reconfiguration 

and distributed generation (DG), have been proposed to 

overcome the challenges caused by the increase in electricity 

consumption. Besides the positive effects on the grid, 

contributions on environmental pollution and other 

advantages, the rapid developments in renewable energy 

technologies have made the DG resources an important issue, 

however, improper DG allocation may result in network 

damages. A lot of studies have been practised with analytical 

and heuristic methods based on load flow for optimal DG 

integration to the network. This novel method based on 

estimation is proposed to determine the size of DG and its 

effects on the network to get rid of the coercive and time-

consuming load flow techniques. Machine learning algorithms, 

such as Linear Regression, Artificial Neural Network, Support 

Vector Regression, K-Nearest Neighbor, and Decision Tree, 

have been used for the estimations and have been applied to 

well-known test systems, such as IEEE 12-bus, 33-bus, and 69-

bus distribution systems. The accuracy of the proposed 

estimation methods has been verified with R-squared and 

mean absolute percentage error. Results show that the 

proposed DG allocation method is effective, applicable, and 

flexible.  

 
 Index Terms—Distributed generation; Distribution system 

planning; DG sitting; Dispersed generation; Forecasting; 

Machine learning; Weka.  

I. INTRODUCTION 

Since installing new central power plants and 

transmission lines to meet the increase in electricity 

consumption requires high cost, it is recommended to 

integrate smaller production units close to consumption 

areas. The small powerful generating units are known as 

distributed generation (DG). Interest in DG has increased 

thanks to various benefits, such as reducing system losses, 

improving the voltage profile, reducing pollutant emissions, 

and increasing system reliability. Incorrect DG allocation to 

the distribution system (DS) does not benefit, but on the 

contrary, it hurts the power system. To ensure effective DG 

allocation, various optimization studies have been reported 

in the literature. Since a predictive method is used in this 
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study, literature studies on estimations related to power 

system also follow. 

In [1], DG placement and network reconfiguration by 

using heuristic algorithms, such as genetic algorithm (GA), 

particle swarm optimization (PSO), differential evolution 

(DE), and artificial bee colony (ABC), have been carried out 

to decrease losses and increase system efficiency. In [2], to 

minimize the annual energy losses, a technique based on 

mixed integer nonlinear programming (MNLP) for various 

renewable DG placements has been developed and applied 

on rural DS. Size of DG units, feeder capacity, voltage 

limits, and penetration limits have been chosen as the 

constraints of the problem. In [3], it has been aimed to 

integrate DG with minimum power as possible and 

minimize active power losses by using various PSO and DE 

algorithms for IEEE 33-bus and 69-bus radial DSs. In [4], 

DGs have been placed in the weakest buses to reduce 

system losses and improve voltage magnitude and stability. 

Whereas sensitivity indices and quadratic curve fitting 

technique have been used for single DG allocation, loss 

enhancement index and power loss reduction index have 

been used for multiple DGs. In [5], whale optimization 

algorithm has been used to determine the optimal size and 

location of four different renewable DG types in four 

distribution systems, such as IEEE 15-bus, 33-bus, 69-bus, 

and 85-bus test systems. Thus, the authors have ensured 

reducing the system losses, enhancing the voltage 

magnitude, and increasing reliability. In addition, the results 

obtained have been compared with other studies in the 

literature. In [6], a bacterial foraging optimization algorithm 

has been used to find the optimum DG size. Whereas 

minimizing network losses and operating costs and 

increasing the voltage stability have been determined as the 

objective function, the current carrying capacities of the 

lines have been as a constraint. In [7], three analytical 

approaches have been proposed to determine the best 

location, size, and power factor of DG unit considering 

energy loss minimization. In [8], an analytical method has 

been used to find the sizing and sitting of DGs in balanced 

radial DS for ensuring minimum network loss. In [9], the 

optimal location and size of solar photovoltaic DG have 

been found by using biogeography-based optimization to 
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minimize losses considering the voltage profile and voltage 

harmonic distortion limits. In [10], an analytical method for 

the allocation of DGs in radial DS has been introduced to 

reduce active and reactive power losses. In [11], a hybrid 

method based on tabu search and GA has been proposed to 

integrate DG and capacitor banks to DS for enhancing 

system performance. In [12], a modified jaya algorithm-

based multi-objective function for allocation of DG with 

high penetration has been produced to reduce active losses 

and improve the voltage profile and has been carried out on 

standard IEEE 33-bus DS. In [13], an optimization 

technique based on hybrid shuffled frog leap teaching and 

learning algorithm has been proposed and applied for 

optimum location and size of electric vehicle fast charging 

stations and DG units to DS. In [14], fault current limiters 

(FCLs) in series with DGs have been used to minimize the 

negative effects of DG allocation to reduce power system 

losses. Nondominated sorting GAs have been used to 

determine DG location, DG size, and FCLs size and 

performed on two test systems. In [15], an optimization 

technique based on PSO for determining the size of a solar 

photovoltaic system (SPV) has been proposed to minimize 

the cost of SPV integrated to grid. In [16], DG placement 

optimization problem has been solved in the practical test 

system of Korea using the optimal locator index to 

determine DG location and using Kalman Filter to 

determine DG size. In [17], the ant colony system algorithm 

has been used to increase system reliability by allocating 

DG and reclosers. In [18], PSO has been used to allocate 

DG for increasing the loadability of distribution systems. In 

[19], to minimize network losses and maximize voltage 

magnitude, the optimal DG placement has been performed 

by using the cuckoo search algorithm. Harmony search 

algorithm [20], an analytical approach [21], ordinal 

optimization [22], and MINLP [23] have been used to 

allocate DG in DS. 

In [24], a multiple linear regression (LR)-based 

methodology has been proposed for long-term load 

estimation using hourly resolution load data of 57 countries. 

In [25], by using meteorological data of Muzaffarabad city 

in Pakistan, electricity consumption has been estimated with 

the help of traditional machine learning (ML) algorithms. In 

[26], to estimate the electricity load of Jeju island, a GA-

optimized approach consisting of ML algorithms, such as 

support vector regression (SVR), k-nearest neighbor (KNN), 

and XGBoost, has been proposed. In [27], the authors have 

aimed to increase the performance of intraday load forecasts 

by grouping according to customer behavior similarities and 

using smart meter data. In [28], in addition to short-term 

load and generation estimates for the Slovenia power 

system, active power losses have been estimated by using 

fuzzy logic decision. In [29], the power consumptions of the 

state of Maine, the region of New England, Singapore, and 

New South Wales of Australia have been estimated in the 

short term by using the method based on the second decision 

mechanism and cross multimodel. In [30], KNN has been 

used for short-term load forecasting (STLF) on Smart City 

Demo Aspern buildings. In [31], a locally weighed SVR has 

been used to forecast two real world electric loads. In [32], 

the fuzzy LR method has been used to predict electricity 

loads of holidays in the short term. In [33], multivariate LR 

and feed-forward neural network (FFNN) have been 

suggested for load prediction of Delhi, India. In [34], a 

knowledge-based expert system has been implemented for 

annual load forecasting. In [35], recurrent artificial NN has 

been used to forecast mid-term daily peak load. In [36], a 

hybrid model for load forecasting has been created using 

data preprocessing technology, individual forecast 

algorithm, and weight determination theory. A method 

based on wavelet decomposition and quadratic gray NN 

combined with the enhanced Dickey-Fuller test [37], 

dynamic model selection based on Q-learning [38], boosting 

based multiple kernel learning method [39], a hybrid method 

consisting of convolutional NN and long short-term memory 

based deep learning (DL) [40], a DL method [41], and a 

hybrid model consisting of clustering and FFNN [42] have 

been proposed for STLF. 

In [43], regression-based analysis has been used to 

estimate the bus voltages of IEEE 12-bus DS. In [44], wind 

speed estimation has been made for Batman province in 

Turkey by using ANN. 

Works in [1]–[23] are studies on DG allocation, and the 

works in [24]–[44] are on predictions related to the power 

system. As can be seen from the literature review, the load is 

mostly accepted as constant and DG output is controllable 

when allocating DG. In practice, the loads and DG output 

constantly vary. Calculating losses and other factors using 

power flow-based algorithms is difficult and time-

consuming. 

The contribution of this study is the estimation of DG 

size, network active losses, reactive losses, and minimum 

bus voltages without of power flow calculations. Machine 

learning algorithms, such as Linear Regression (LR), 

Artificial Neural Network (ANN), Support Vector 

Regression (SVR), K-Nearest Neighbor (KNN), and 

Decision Tree (DT), are used for five estimation cases. The 

cases are implied to IEEE 12-bus, 33-bus, and 69-bus 

standard test systems and the obtained results are compared. 

Remaining of the paper is organized as follows. The 

methods used for estimation are summarized in Section II. 

Estimation error and performance evaluation methods are 

explained in Section III. In Section IV, brief information is 

given about the data collection and the programs used in this 

study. Section V presents the results of five cases created for 

estimations. Results are discussed in Section VI. Finally, the 

conclusions are located in Section VII. 

II. METHODS USED FOR THE PROPOSED APPROACH 

Machine learning is the computer modelling of systems 

that make predictions by making inferences from data with 

mathematical and statistical operations. It has become more 

popular as computers have become more powerful in recent 

years. In this paper, machine learning algorithms are 

proposed for the estimation process and they are as follows. 

A. Linear Regression 

LR is one of the prediction methods that can determine 

the relationship between two or more variables that have a 

cause-effect relationship and make predictions from the 

future unknown about that subject by using this relationship.  

In this method, a mathematical model is used to explain 

the relationship between two or more variables and this 
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model is called “linear regression model”. There are two 

types of regression models. These are simple LR with one 

independent variable and multivariate LR analysis with 

more than one independent variable. The linear equation can 

be written as 

     o i iy w xw  (1) 

where y is the dependent variable (estimated value), wi is the 

coefficient of weight, xi is the independent variable, and ε is 

the error value. In this study, the independent variables are 

factors, such as load change, DG size, and location, and the 

dependent variable is system losses affected by these 

factors.  

B. Artificial Neural Network 

ANN, first modelled in 1943 by neurophysiologist 

Warren McCulloch and mathematician Walter Pitts, is one 

of the artificial intelligence algorithms and has a wide range 

of uses [45]. Since it is modelled by imitating the human 

brain, ANN has the features of generating, forming, and 

interpreting new information, as well as learning 

information. It is a good classifier algorithm that gives 

successful results in the analysis of repeatedly measured 

data sets. ANN has varieties, such as feed-forward, back 

propagation, single layer, and multilayer. Figure 1 shows a 

multilayer network structure with three inputs. 

 
Fig. 1.  Structure of a three-layered perceptron type ANN. 

Although ANN has many advantages, there are also some 

disadvantages of them. These drawbacks can be given as 

follows [46]: 

 It is not possible to know what is in the system; 

 Stability analysis is problematic, except for some 

networks; 

 It can be difficult to apply to different systems. 

C. Support Vector Regression 

SVR was modelled by Drucker, Burges, Kaufman, Smola, 

and Vapnik using support vector machines [47]. It is a 

kernel-based machine learning algorithm used for 

classification and regression. This method has much better 

performance and ability to solve nonlinear problems 

compared to other traditional learning methods. 

Examples of linear and nonlinear SVR are shown in Fig. 

2 and Fig. 3, respectively [48]. The error tolerance is zero 

for the data inside the area defined as ε. Notably, the 

variable ξ represents the fault tolerance outside the sensitive 

area and is also referred to as training error in the literature. 

In the region within the sensitive area, the value of ξ is zero. 

The fault tolerance can be expressed as in (2) 
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x y x y
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If it is within the defined range, the error is equal to zero. 

The term C is a constant that provides the balance between 

the experimental error expressed as the cost and the weight 

vector. It is important to determine these values for high 

accuracy support vector regression modelling. 

 
Fig. 2.  Example of Linear Support Vector Regression [48]. 

 
Fig. 3.  Example of Non-linear Support Vector Regression [48]. 

D. K-Nearest Neighbor 

KNN, first introduced by Fix and Hodges in 1951, is the 

learning algorithm that finds the closest neighbor among the 

variables [49]. KNN is also known as the lazy student in the 

literature and it is often preferred because of its high 

performance in very wide areas of use. The most important 

point here is the distance between data points and the k 

value. K is an important parameter used to determine 

distances and is chosen as an odd number. Manhattan, 

Minkowski, Mahalanobis and Euclidean distance measures 

are generally used to calculate the distance between data 

[50]. 

Figure 4 shows a schematic diagram of KNN. When k is 

taken as 3, the sample classification result is prismatic. 

When k = 7 and k = 11, the results are triangle and 

prismatic, respectively. It is clear from Fig. 4 that the 

classification results change significantly when k takes 

different values. Depending on the distance calculation 

method used, different nearest neighbors can be found, 

which affects the classification results [51]. 
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Fig. 4.  K-Nearest Neigbor diagram [51]. 

E. Decision Tree 

DT is a classification algorithm in the form of a tree 

structure consisting of leaves, branches, and root nodes. DT 

works similarly to other ML algorithms. The algorithm 

generates decision trees using information gain and entropy.  

A decision tree classification example can be seen in Fig. 

5. In this example, the decision to go out is classified as yes 

or no, depending on the weather. Outlook is defined as the 

root node. Weather probabilities are primarily classified as 

sunny, overcast, and rainy, and these are branch node 

values. The second branch node values are the variables of 

humidity and wind. In cases the weather is sunny and the 

humidity is high, or when it is rainy and the wind is strong, 

the decision to go out is determined as no, and in other 

cases, it is classified as yes. 

 
Fig. 5.  An example of Decision Tree classification. 

III. ESTIMATION ERROR AND PERFORMANCE EVALUATION 

METHODS 

A. R-Squared 

Actual values are used to test the accuracy of the 

estimation models. An R-squared error-based analysis is 

used to predict the performance and reliability of the model 

[24]. The R-squared error is calculated as follows 
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where yi is the actual value, ŷi is the predicted value, yi is 

the mean of the actual values, and N is the number of 

samples. R-squared takes values between zero and one (0 ≤ 

R2 ≤ 1). 

B. Mean Absolute Percentage Error (MAPE) 

The ratio between absolute prediction errors and the real 

values is defined as MAPE. It is used to measure the 

performance of predictions and evaluate the results [27]. 

MAPE is calculated as follows 
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IV. DATA COLLECTION AND USED PROGRAMS 

In this study, a data consisting of normalized load 

variation, DG power injections, DG locations, active power 

losses, reactive power losses, and minimum busbar voltages 

have been used for the three test systems, such as IEEE 12-

bus, 33-bus, and 69-bus distribution systems. The 

normalized load variation data changing according to season 

and time of day is given in [2] and it is shown graphically in 

Fig. 6. These data are provided on the Github repository 

[52]. 

 
Fig. 6.  The change of normalized load variation according to season and 

time of day. 

Developed prediction models in this study have been 

created by WEKA, which consist of the initial of Waikato 

Environment for Knowledge Analysis. It is a free data 

mining software that includes many machine learning 

algorithms. While making predictions, 75 % of the data have 

been used for training and 25 % - for testing. The algorithms 

selected in WEKA for ML methods are given in Table I. 

TABLE I. WEKA ALGORITHMS FOR ML METHODS. 

ML Methods WEKA Algorithms 

LR LinearRegression 

ANN MultilayerPerceptron 

SVR SMOreg 

KNN IBk 

DT M5P 

 

Predictions have been made by optimizing the necessary 

parameters of ML methods. Related graphics and error 

performance analysis have been obtained as a result of 

processing the outputs of WEKA through the MATLAB 

software. 

V. RESULTS OF PREDICTION MODELS 

A. Case 1 

In this case, DG sizing is estimated using normalized load 

variation (NLV). The five estimation methods mentioned in 

Section II are applied for 33-bus and 69-bus DSs. 

The regression model equations of LR for DG sizing 

estimation are given in Table II. Estimation results and 
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actual values (AV) are shown in Fig. 7 for 33-bus and in 

Fig. 8 for 69-bus DSs. Calculated error and performance 

evaluations are compared in Table III. 

TABLE II. REGRESSION MODEL EQUATIONS FOR DG SIZING 

ESTIMATION. 

Distribution 

systems 
Regression model equations 

33-bus Pdg = 2566.1833 × LoadLevel - 53.5766 

69-bus Pdg = 1827.2793 × LoadLevel - 4.711 

 
Fig. 7.  Comparison of DG sizing predictions and actual values for 33-bus 

distribution system. 

 
Fig. 8.  Comparison of DG sizing predictions and actual values for 69-bus 

distribution system. 

TABLE III. COMPARISON OF EVALUATIONS FOR DG SIZING 

ESTIMATION. 

Distribution systems Methods R2 MAPE [%] 

33-bus 

LR 0.9965 0.9923 

ANN 0.9963 0.8630 

SVR 0.9974 0.7560 

KNN 0.9922 0.9997 

DT 0.9965 0.9923 

69-bus  

 

LR 0.9956 0.9856 

ANN 0.9861 1.9299 

SVR 0.9956 0.9695 

KNN 0.9897 1.0168 

DT 0.9956 0.9856 

B. Case 2 

In this case, the active power losses in 33-bus and 69-bus 

DSs are estimated using NLV through all mentioned 

methods. 

The regression model equations of LR are given in Table 

IV. Relevant forecast values and actual values are shown in 

Fig. 9 and Fig. 10 for 33-bus and 69-bus DSs, respectively. 

Comparison of calculated evaluation values are given in 

Table V.  

TABLE IV. REGRESSION MODEL EQUATIONS FOR ESTIMATING 

ACTIVE POWER LOSS USING THE NLV. 

Distribution systems Regression model equations 

33-bus PL = 286.3641 × LoadLevel - 97.0291 

69-bus PL = 318.0325 × LoadLevel - 108.6808 

 
Fig. 9.  Comparison of active power loss predictions using the normalized 

load variation and actual values for 33-bus distribution system. 

 
Fig. 10.  Comparison of active power loss predictions using the normalized 

load variation and actual values for 69-bus distribution system. 

TABLE V. COMPARISON OF EVALUATIONS FOR ACTIVE POWER 

LOSS ESTIMATION USING NLV. 

Distribution systems Methods R2 MAPE [%] 

33-bus 

LR 0.6027 24.9303 

ANN 0.9972 1.4877 

SVR 1 0.1683 

KNN 0.9951 2.3198 

DT 0.9571 8.0833 

69-bus 

LR 0.5789 25.9041 

ANN 0.9972 1.4793 

SVR 1 0.2203 

KNN 0.9951 2.3349 

DT 0.9547 8.3852 

C. Case 3 

In this case, the reactive power losses are estimated using 

the normalized load variation for 33-bus and 69-bus DSs. 

Table VI shows the regression model equations of linear 

regression. Prediction values and actual values are shown in 

Fig. 11 for 33-bus and in Fig. 12 for 69-bus distribution 

system. Table VII compares the R-squared and mean 

absolute percentage error values. 
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TABLE VI. REGRESSION MODEL EQUATIONS FOR REACTIVE 

POWER LOSS ESTIMATION. 

Distribution systems Regression model equations 

33-bus QL = 190.977 × LoadLevel - 64.7527 

69-bus QL = 144.3074 × LoadLevel - 49.1576 

 
Fig. 11.  Comparison of reactive power loss predictions and actual values 

for 33-bus distribution system. 

 
Fig. 12.  Comparison of reactive power loss predictions and actual values 

for 69-bus distribution system. 

TABLE VII. COMPARISON OF EVALUATIONS FOR REACTIVE 

POWER LOSS ESTIMATION. 

Distribution systems Methods R2 MAPE [%] 

33-bus 

LR 0.6008 25.0064 

ANN 0.9972 1.4869 

SVR 1 0.1716 

KNN 0.9951 2.3208 

DT 0.9569 8.1057 

69-bus 

LR 0.5879 25.5357 

ANN 0.9972 1.4834 

SVR 1 0.1905 

KNN 0.9951 2.329 

DT 0.9557 8.2615 

D. Case 4 

In this case, the minimum or in other words worst busbar 

voltages are forecasted using NLV for 33-bus and 69-bus 

DSs. The regression model equations of LR are given in 

Table VIII for minimum voltage estimation. Estimation and 

actual values are shown in Fig. 13 and Fig. 14 for 33-bus 

and 69-bus DSs, respectively. Comparison of error and 

performance analysis for this case are given in Table IX. 

TABLE VIII. REGRESSION MODEL EQUATIONS FOR MINIMUM 

BUSBAR VOLTAGE ESTIMATION. 

Distribution systems Regression model equations 

33-bus Vmin = -0.0896 × LoadLevel + 1.0031 

69-bus Vmin = -0.094 × LoadLevel + 1.0037 

 
Fig. 13.  Comparison of minimum busbar voltage predictions and actual 

values for 33-bus distribution system. 

 
Fig. 14.  Comparison of minimum busbar voltage predictions and actual 

values for 69-bus distribution system. 

TABLE IX. COMPARISON OF EVALUATIONS FOR MINIMUM 

BUSBAR VOLTAGE ESTIMATION. 

Distribution systems Methods R2 MAPE [%] 

33-bus 

LR 0.9982 0.0245 

ANN 0.9956 0.0476 

SVR 1 0.0010 

KNN 0.9932 0.0411 

DT 0.9998 0.0078 

69-bu 

LR 0.9976 0.0300 

ANN 0.9956 0.0498 

SVR 1 0.0017 

KNN 0.9932 0.0429 

DT 0.9997 0.0095 

E. Case 5 

In this case, the active power losses are estimated using 

normalized load variation, DG sizing, and location. Except 

for LR, the other four methods are applied on 12-bus, 33-

bus, and 69-bus DSs. LR is not used in this case because it 

gives large errors well above the acceptable limit. 

Results estimated by the four methods and actual values 

are shown in Fig. 15 for 12-bus, in Fig. 16 for 33-bus, and in 
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Fig. 17 for 69-bus DSs. Since the image is not very clear in 

Figs. 10–12, the image is enlarged in a certain range at the 

bottom of the table. Error and performance evaluations of 

these estimations are compared in Table X.  

 
Fig. 15.  Comparison of actual value and active power loss predictions 

using the normalized load variation, DG sizing, and DG location for 12-bus 

distribution system. 

 
Fig. 16.  Comparison of actual value and active power loss predictions 

using the normalized load variation, DG sizing, and DG location for 33-bus 

distribution system. 

 
Fig. 17.  Comparison of actual value and active power loss predictions 

using the normalized load variation, DG sizing, and DG location for 69-bus 

distribution system. 

TABLE X. COMPARISON OF EVALUATIONS FOR ACTIVE POWER 

LOSS ESTIMATION USING NLV, DG SIZE, AND LOCATION. 

Distribution systems Methods R2 MAPE [%] 

12-bus 

ANN 0.9997 19.3755 

SVR 1 4.7413 

KNN 1 0.4473 

DT 0.9994 44.2325 

33-bus 

ANN 0.9861 13.9403 

SVR 0.8876 14.0762 

KNN 0.9999 1.1118 

DT 0.9989 5.4546 

69-bus 

ANN 0.9743 13.5462 

SVR 0.7977 14.4224 

KNN 0.9998 1.4433 

DT 0.9983 5.1876 

VI. DISCUSSION 

The following inferences can be made by looking at all 

tables and figures in Section V. In case 1, the estimates 

made with all proposed methods are very close to the real 

values and the best results (0.756 % and 0.9695 %) are 

obtained by SVR. In the second and third cases, while the 

predictions made with the other four methods except LR are 

very successful, LR gives high MAPE (25 %) and low R-

squared (0.6) value and SVR gives the best results 

(  0.2 %). In Section IV, all methods make successful 

predictions with nearly zero (< 0.05 %) errors and the best 

(0.001 %) is SVR. In case 5, the best results (< 1.5 %) are 

obtained by KNN. 

VII. CONCLUSIONS 

In this paper, a new DG allocation approach based on 

estimation is proposed. In the first four cases, DG size, 

active losses, reactive losses, and worst voltages are 

estimated using the normalized load variation (single input), 

while in the last case, only active losses using normalized 

load level, DG location, and DG size (three inputs) are 

estimated. Machine learning algorithms, such as LR, ANN, 

SVR, KNN on WEKA, and DT, for single input predictions 

are applied on IEEE 33-bus and 69-bus test systems. 

Mentioned algorithms, except LR for the last case, are 

applied on 12-bus, 33-bus, and 69-bus distribution systems. 

SVR gives the best results for single input estimations (cases 

1–4), whereas the best results are obtained with KNN for 

multi-input predictions. Whereas SVR can be used to obtain 

the best predicted output, such as DG size, system losses, 

and minimum voltages, in the systems before DG 

integration, KNN can be used for estimation after DG 

integration. If there is no linear relationship between the 

input and output data, it is not appropriate to make 

predictions with LR. The results of the analysis demonstrate 

that the proposed approach can be adequate to determine 

DG size and its effects on DS. 
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