
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

1Abstract—In this paper, a hardware accelerator for sparse

support vector machines (SVM) is proposed. We believe that

the proposed accelerator is the first accelerator of this kind.

The accelerator is designed for use in field programmable gate

arrays (FPGA) systems. Additionally, a novel algorithm for the

pruning of SVM models is developed. The pruned SVM model

has a smaller memory footprint and can be processed faster

compared to dense SVM models. In the systems with memory

throughput, compute or power constraints, such as edge

computing, this can be a big advantage. The experiments on

several standard datasets are conducted, which aim is to

compare the efficiency of the proposed architecture and the

developed algorithm to the existing solutions. The results of the

experiments reveal that the proposed hardware architecture

and SVM pruning algorithm has superior characteristics in

comparison to the previous work in the field. A memory

reduction from 3 % to 85 % is achieved, with a speed-up in a

range from 1.17 to 7.92.

 Index Terms—Support vector machines; Hardware

accelerator architectures; Edge computing.

I. INTRODUCTION

Support Vector Machine (SVM) is one kind of machine

learning algorithms, firstly introduced in [1]. SVMs were

one of the most popular predicting models until

Convolutional Neural Networks (CNN) have been proposed.

Also, there is work on hybrid models of CNN and SVM,

e.g., in [2], [3].

As with other supervised machine learning algorithms,

SVM contains two phases: a learning phase and a predicting

phase. The SVM model approximates unknown function U.

In the learning phase, input to the SVM training algorithm is

a training set with m instances, each of which has n

attributes

 { , }, 1.. , , { 1, 1}.n

i i iTS x y i m x X R y Y        (1)

The output of the SVM learning phase is a linear

Manuscript received 24 February, 2020; accepted 29 April, 2020.

This work was partially supported by Serbian Ministry of Education and

Science under a grant (No. TR32016 - “Innovative electronic components

and systems based on inorganic and organic technologies embedded in

consumer goods and products”). This project has received funding from the

European Union’s Horizon 2020 research and innovation programme under

a Grant Agreement (No. 856697).

classification function L in a form

 : , () , , .nL X Y L x w x b w R b R      (2)

The function L approximates the unknown function : X →

Y.

Function L, as previously defined, can correctly classify

only the linearly separable training set. To be able to classify

instances that belong to non-linearly separable classes, one

can apply a non-linear mapping φ to input space X to

transform the original input feature space to a high-

dimensional feature space , .kZ R k n  The same linear

classification function can be used to separate points in this

high-dimensional feature space, achieving non-linear

classification in the original space X. Using the kernel trick,

the SVM classifier still can work in the original space, so

the non-linear classification function can be expressed in the

form

 () () .F x w x b   (3)

SVM splits points in the input feature space with a linear

hyperplane. The hyperplane is located at a maximal distance

from the training set instances of each class that is closest to

the hyperplane. In general, this cannot be done without

errors for all training set instances, so the SVM algorithm

allows some training set instances to be incorrectly

classified. The problem of finding an optimal splitting

hyperplane can be described formally as the constrained

quadratic programming (CQP) problem:

2

,
1

1
min ,

2

m

i
w b

i

w C 


 
 

 
 (4)

 (()) 1 , 0, 0, 1... .i i iy w x b C i m          (5)

The first part of the minimization function puts the

hyperplane at the maximal margin, while the second part

changes the position of the hyperplane in a way that

minimizes the number of training set instances that will be

misclassified. These two criteria are contradictory, so the

parameter C defines a trade-off between them.

Using a method of Lagrange multipliers, the original CQP

problem can be transformed into its dual form, which is

easier to solve (6)–(9):

Hardware Acceleration of Sparse Support

Vector Machines for Edge Computing

Vuk Vranjkovic*, Rastislav Struharik

Department of Power, Electronic and Telecommunication Engineering, Faculty of Technical Sciences,

University of Novi Sad,

Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia

bykbpa@uns.ac.rs

https://doi.org/10.5755/j01.eie.26.3.25796

42

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

1

min ,
2

T TW r


  
 

 
 

 (6)

 (,),ij i j i jw y y K x x (7)

 (,) () (),i j i jK x x x x  (8)

 0 , 1, 1... , 0.T

i iC r i m y        (9)

The m m matrix W is symmetric positive semidefinite,

and its elements are .ijw The function K is called kernel and

it implicitly defines a non-linear mapping - φ. There are

several popular kernels in use, some of them are:

 (,) (1) : ,d

i j i jK x x x x polynomial   (10)

2

(,) : radial basis function,i jx x

i jK x x e
 

 (11)

 (,) tanh() : .i j i jK x x ax x b sigmoid   (12)

The parameters of the kernel are d, γ, a, and b.

More details about the theory behind the SVM training

can be found in [4].

After the training procedure completes, some of the

Lagrange multipliers will be zero, and others will be non-

zero. The training set instances corresponding to the non-

zero multipliers from input data set are called support

vectors. Let l be the number of support vectors (l ≤ m).

The SVM training algorithm outputs a non-linear

approximation function in the following form

1

: , () (,),
l

i i i

i

V X Y V x b y K s x


   (13)

where is is the support vector and x is the input instance.

The evaluation of the function V(x) for the unknown input

instance is called classification. This is the second phase of

the SVM algorithm. If the value of the function is greater

than zero, the input instance is classified as a class with

label +1, otherwise, it is labeled as a class -1.

The SVM algorithm can be generalized to do a multi-

class classification also. One approach for this

generalization is given in [5].

The efficient algorithm for the training of SVM is a

Sequential Minimal Optimization (SMO), firstly introduced

in [6]. Several additional optimizations of the SMO

algorithm have been proposed, one example being [7].

Machine learning algorithms are being used in different

kinds of applications, ranging from servers to embedded

systems. Deploying machine learning models to embedded

systems is especially difficult because of the size of the

models. Therefore, the compression and reduction of the

size of the models attracted a lot of research effort [8]. The

compression of the size of SVM models is presented in [12].

The main idea in those papers for the reduction of SVM size

is in a smart selection of support vectors during the training

of SVMs. In this paper, we present a complementary idea

for the size reduction of SVMs: the removal of attributes

from support vectors. To the best of our knowledge, this

approach to the reduction of SVM size has not been

previously reported for SVMs.

We propose the AST-SVM algorithm for training of

attribute sparse SVMs, and the ASA-SVM hardware

accelerator that can take advantage of this kind of sparse

SVMs. The presented accelerator is aimed for use in

“FPGA” (Field-Programmable Gate Array) systems, and it

is especially useful for embedded and edge applications,

where designers are constrained with severe computational,

memory throughput, and power limitations. The AST-SVM

algorithm produces SVMs with an increased number of

zeroes in model parameters. By operating on these sparse

support vector representations, the ASA-SVM accelerator

usually requires less memory for the storage of support

vectors, and by skipping calculations of zero products

during classification, it can reach higher performance than

comparable dense accelerators.

The hardware acceleration of SVMs has been an

interesting topic in the research community, resulting in

several proposed hardware architectures [14]]–[[19]. In

contrast to the ASA-SVM, all previously proposed

architectures operate on dense SVMs. As far as we know,

the ASA-SVM accelerator is the first to operate on sparse

SVMs.

The rest of this paper is structured as follows. The

algorithm for pruning SVMs is given in section II. The

AST-SVM algorithm sets a predefined number of attributes

of training instances to zero; therefore, reducing the size of

the classifier after the training is done. Section III contains a

description of the ASA-SVM architecture, which is

designed to take advantage of sparse SVMs, which contains

a large number of zeroes in each of the support vectors. In

that way, a higher processing performance can be achieved,

as well as less memory usage. In section IV, the

experimental results of the AST-SVM algorithm and ASA-

SVM architecture are presented for various standard

datasets. Section V contains conclusions.

II. ATTRIBUTE SPARSE TRAINING SVM (AST-SVM)

ALGORITHM

The AST-SVM algorithm uses a simple method for

choosing which values to eliminate. Although simple, the

method gives good results. The presented algorithm uses

standard SVM training as the sub-task. In the AST-SVM

algorithm, some of the values of attributes from some of the

input instances of the input training set are set to zero. Then,

the standard SVM training algorithm is called. After the

SVM training is completed, the output is the sparse SVM

model.

The algorithm starts with some training dataset. At every

iteration, the algorithm keeps all training instances sorted by

their number of non-zero values. The training instance with

the biggest number of non-zero values is chosen for attribute

elimination. Then, the attribute whose absolute value is

closest to zero is set to zero, i.e., eliminated. This is repeated

until a predefined percentage of attribute values is

eliminated from the training set. The output of this

elimination procedure is the pruned input training dataset.

After the elimination phase is over, the standard SVM

training is started with the pruned input dataset. This

procedure, as a result, outputs the SVM model with sparse

support vectors.

43

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

Algorithm 1. Attribute Sparse Training SVM (AST-SVM) Algorithm.

AST-SVM (DS, target_zv_pct)

DS - Input dataset used for the training of

SVM. The DS contains training

instances, which are potential support

vectors.

target_zv_pct - Target percentage of zero

values in DS

Sort DS instances by the number of attributes

different from zero

current_zv_pct is the current percentage of

zeroes in DS

Determine current_zv_pct

While current_zv_pct is less then

target_zv_pct

do

{

Take the instance with the biggest number of

non-zero values.

Determine the attribute value which is not

zero, but whose absolute value is the

closest to the zero.

Set that attribute value to zero.

Increase current_zv_pct accordingly.

Keep DS instances sorted.

}

Run regular training SVM algorithm on modified

DS and return SVM model as the result.

The listed algorithm uses an ordinary SVM training

algorithm as one of its steps. We will call a model, which

the ordinary algorithm outputs on the original, unmodified

dataset, dense SVM model. The SVM model, which is the

output of the AST-SVM algorithm, will be called “pruned

SVM model”. The dense model can contain some zero

attributes in its support vectors. Please notice that the pruned

SVM model always contains less non-zero attributes

compared to the dense SVM model. However, that does not

mean that the pruned SVM model always contains exactly

target_zv_pct less non-zero attributes compared to the dense

SVM model. The reason for this is that modification of the

training dataset will change, which training instances will

become support vectors. For example, the dense SVM

model can have 0 % of zeroes in its support vectors. The

value of target_zv_pct can be set to 5 %. The modified

training dataset will have 5 % attribute values of the training

instances set to zero. Nevertheless, after the ordinary SVM

training algorithm is run on the modified training dataset,

the resulting pruned SVM model can contain only 4 %

fewer attributes compared to the dense SVM model. The

pruned SVM model can use more support vectors than the

dense SVM model, but still has less non-zero attributes

overall.

III. HARDWARE ACCELERATOR FOR SPARSE SVMS

The digital architecture, which can take advantage of the

sparse SVM model, called “ASA-SVM” (Attribute Sparse

Accelerator - SVM) is the modification of the “RMLC”

(Reconfigurable Machine Learning Classifier) architecture,

proposed in [20].

In the RMLC architecture, the SVM is implemented by

splitting the sum calculation to several identical modules,

each of which calculates only one part of the complete sum

V(x) as shown in Fig. 1.

Fig. 1. Implementing SVM using RMLC architecture from [20].

In Fig. 1, there are K Computing Blocks (CB). Each CB

calculates one part of the complete sum V(x). CB 1

calculates sum up to 1

thl support vector. The partial sum it

calculates is then passed to the CB 2 module, alongside with

the current input instance. The CB 2 module then calculates

the next part of the complete sum from 1(1)thl  support

vector to 2

thl support vector and so on. The architecture is

designed to achieve the high instance throughput by using

pipelining. When the CB 1 module passes the partial sum of

the first input instance to the CB 2 module, it immediately

starts to calculate the partial sum using the next input

instance. In the architecture with K CBs, up to K input

instances can be processed at the same time.

The ASA-SVM architecture keeps only the SVM

functionality part of the RMLC architecture and adds

hardware support needed for the evaluation of sparse SVMs.

The top-level block diagram of the ASA-SVM accelerator is

shown in Fig. 2. The CBs are arranged in an array of

identical pipeline stages. A configuration module (CM)

reads the SVM configuration data from the main memory

through the mm_rd interface and sends the data to a

particular CB. The configuration for each CB module

consists of three parts. The first part is stored inside the

support vector memory (SV_M) and it contains support

vectors and Lagrange multipliers for the part of the complete

sum, which that CB calculates. The second part contains

increments stored in INC_M memory, which determine

which attributes of the support vectors and the input instance

should be processed. This enables skipping all

multiplications that use zero attributes from the support

vectors. The third part of the configuration is the samples of

the specified non-linear function needed for the evaluation

of the selected kernel function.

Fig. 2. Top-level block diagram of ASA-SVM accelerator.

In section II, the algorithm for the training of sparse

SVMs was presented. The sparse SVMs have an advantage

over ordinary SVM models since they contain fewer

attributes with non-zero values. Let frac be the percentage

of attributes, which are not zero. If the classification speed

of the input instance is critical, then the sparse SVM models

could be processed 1/frac times faster than the dense SVM

models by skipping all product terms that use a zero-valued

44

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

attribute. The hardware architecture needs to be designed to

take advantage of this opportunity, and the ASA-SVM is the

first SVM accelerator with this capability.

In Fig. 3, the skipping of product terms with zero-valued

support vector attributes during kernel calculation is

illustrated. Instead of storing the whole support vector in the

memory, only non-zero values (NZV) are stored in the

SV_M memory. Every NZV value corresponds to one

increment value, which is stored in separate, INC_M

memory. During the kernel calculation, for every NZV of

the support vector, the corresponding value from the input

instance is taken. All zero-valued attributes in the support

vector are skipped during the kernel calculation evaluating

the kernel faster. The second benefit of this technique is that

usually less memory is needed for storing support vectors.

Only the NZVs are stored with their corresponding

increments. The increments can be coded with fewer bits. In

the example, from Fig. 3, only 4 terms of the kernel

calculation will be used instead of 12. Also, only 4 NZV

will be stored, alongside with 4 increments.

Fig. 3. Skipping in kernel calculation.

Each CB module is also pipelined. Figure 4 shows the

architecture of the CB. A control unit reads the values from

the increment memory and calculates the effective address

of the attributes. The effective address is used to read the

current attribute from the input memory. In the SV memory,

NZV values of support vectors are stored. The NZVs are

read sequentially. The data read from the input memory and

SV memory are sent for further processing to the

appropriate functional unit.

Fig. 4. The detailed architecture of the CB.

The control unit also controls the data selection

multiplexers and enables signals of registers to configure

pipelined data path required to implement the selected type

of kernel needed for the classification. To perform the

necessary computations, only one multiplier and adder are

needed. After the vector calculation is finished, the final

value is sent as an address to the non-lin memory. The value

read from the non-lin memory is the kernel value for the

current support vector and it is accumulated to the running

sum after multiplication with the corresponding Lagrange

multiplier stored in the SV memory. This process is then

repeated for all support vectors stored in CB.

The RMLC architecture from [22] has a processing time

of “RB” (Reconfigurable Block) –
RMLCT

 () ,RMLC sv attr clkT N N d T  (14)

where
svN is the number of SVs in a block,

attrN is the

number of attributes in the SV, the value d is 4, depending

on the type of kernel used in the SVM module, and
clkT is a

period, on which the architecture works. The ASA-SVM

architecture proposed in this paper has the processing time

of one CB block -
ASA SVMT 

1

() ,
svN

i

ASA SVM nzv clk

i

T N d T



  (15)

where i

nzvN is the number of NZVs in the ith SV of the CB.

The value of i

nzvN is always smaller than ,attrN so the

processing speed of ASA-SVM is always greater than

RMLC’s.

The AST-SVM algorithm is designed to keep the number

of NZVs evenly distributed along all support vectors. For

every dataset, there is a threshold, when the maximum

difference between
i

nzvN values will be 1. Let
nzvN be

max().i

nzvN Processing time of ASA-SVM architecture

always satisfies the following condition

 () .ASA SVM sv nzv clkT N N d T   (16)

The speed-up S of the ASA-SVM architecture, compared

to RMLC, can be calculated as

 .RMLC attr

ASA SVM nzv

T N d
S

T N d


 


 (17)

For large datasets, where
attrN d and ,nzvN d the

speed-up equation can be approximated as

1

.attr

nzv

N
S

N frac
  (18)

From the approximate equation for speed-up, it is clear

that the efficiency of the ASA-SVM is directly proportional

to the amount of pruning achieved during the training of the

sparse SVM model.

IV. EXPERIMENTAL RESULTS

Xilinx Vivado Design Suite is used for the development

of the ASA-SVM architecture. The default values for

synthesis and implementation settings were set. Zynq

Ultrascale+ MPSoC ZCU102 Evaluation Board [21] was a

45

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

test platform, on which experiments were done.

The training of SVM models after pruning of the datasets

was done using the LIBSVM library [22]. All standard

procedures from the library were used with default

parameters.

The ability of the AST-SVM algorithm to compress SVM

classifiers was tested on several datasets from the LIBSVM

dataset page [23]. The datasets of various sizes and

characteristics were selected.

For every dataset, 19 pruning factors were used as inputs

for the AST-SVM algorithm. The targeted pruning factors

ranged from 5 % to 95 % with steps of 5 %. For every

pruning factor, the dataset was pruned, and then the

LIBSVM training procedure was called to create sparse

SVM. The accuracy of the resulting sparse SVM model and

its size was then determined. In all cases, if the dataset was

split into training and validation sets, the training set was

used for training, and the accuracy was measured on the

validation dataset. In case when the dataset has not been

split, the whole dataset was used for training, and also for

the accuracy measurement. Table I presents the major

characteristics of the datasets that were used in the

experiments.

TABLE I. DATASETS’ CHARACTERISTICS.

Dataset name Short name Attributes Instances

Wisconsin Breast Cancer bcancer 10 683

Pima Indians Diabetes diabetes 8 768

Glass Identification glass 9 214

Heart Disease heart 13 270

Wine Recognition wine 13 178

Mushrooms mush 112 8124

USPS usps 256 7291

Poker Hand poker 10 25010

MNIST mnist 780 60000

CIFAR10 cifar 3072 50000

SVHN svhn 3072 73257

In the following Table II–Table XII and Fig. 5–Fig. 15,

the results of the experiments are shown. The tables show

how much it is possible to prune the SVM model trained

using the AST-SVM algorithm on the given dataset. Also,

real size reductions are shown.

TABLE II. BENCHMARKING RESULTS - BCANCER.

Target ACC NZV ZV Reduction Speed-up Memory

0 97.2182 814 0 1.00 1.00 1.25

0.05 97.0717 821 26 1.01 0.99 1.26

0.1 97.2182 750 75 0.92 1.06 1.15

0.15 97.0717 741 106 0.91 1.07 1.14

0.2 96.6325 710 159 0.87 1.10 1.09

0.25 96.3397 720 204 0.88 1.09 1.11

0.3 96.4861 648 243 0.80 1.17 1.00

0.35 96.3397 668 300 0.82 1.15 1.03

0.4 96.0469 623 356 0.77 1.20 0.96

0.45 96.1933 628 417 0.77 1.20 0.96

0.5 95.754 570 475 0.70 1.27 0.88

0.55 95.6076 561 539 0.69 1.29 0.86

0.6 95.4612 495 594 0.61 1.39 0.76

0.65 95.022 518 736 0.64 1.35 0.80

0.7 94.7291 495 869 0.61 1.39 0.76

0.75 94.2899 547 1213 0.67 1.31 0.84

0.8 94.7291 527 1409 0.65 1.34 0.81

0.85 91.9473 756 2797 0.93 1.05 1.16

0.9 76.2811 665 2998 0.82 1.15 1.02

0.95 89.1654 718 4551 0.88 1.09 1.10

0

20

40

60

80

100

120

140

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 5. Pruning-accuracy graph for bcancer.

Fig. 6. Pruning-accuracy graph for diabetes.

46

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

TABLE III. BENCHMARKING RESULTS - DIABETES.

Target ACC NZV ZV Reduction Speed-up Memory

0 77.9948 4232 7 1.00 1.00 1.25

0.05 78.125 4040 190 0.95 1.03 1.19

0.1 77.474 3872 376 0.91 1.06 1.14

0.15 77.2135 3703 563 0.88 1.09 1.09

0.2 76.6927 3502 746 0.83 1.13 1.03

0.25 76.8229 3299 949 0.78 1.17 0.97

0.3 75.5208 3074 1111 0.73 1.22 0.91

0.35 75.2604 2892 1302 0.68 1.27 0.85

0.4 74.8698 2752 1541 0.65 1.31 0.81

0.45 75.2604 2584 1736 0.61 1.35 0.76

0.5 75.3906 2340 1881 0.55 1.43 0.69

0.55 75.5208 2144 2131 0.51 1.49 0.63

0.6 75.3906 1965 2274 0.46 1.56 0.58

0.65 74.6094 1826 2602 0.43 1.61 0.54

0.7 75 1700 2935 0.40 1.66 0.50

0.75 68.099 1540 3086 0.36 1.74 0.45

0.8 74.7396 1341 3483 0.32 1.84 0.40

0.85 73.1771 1167 3702 0.28 1.93 0.34

0.9 68.6198 949 3893 0.22 2.07 0.28

0.95 65.1042 751 4091 0.18 2.22 0.22

TABLE IV. BENCHMARKING RESULTS - GLASS.

Target ACC NZV ZV Reduction Speed-up Memory

0 59.3458 2334 536 1.00 1.15 1.02

0.05 56.0748 2234 608 0.96 1.18 0.97

0.1 58.8785 2139 703 0.92 1.21 0.93

0.15 60.2804 2059 797 0.88 1.24 0.90

0.2 56.5421 1973 883 0.85 1.28 0.86

0.25 61.6822 1885 985 0.81 1.31 0.82

0.3 52.8037 1799 1071 0.77 1.35 0.78

0.35 58.8785 1692 1164 0.72 1.40 0.74

0.4 60.2804 1629 1255 0.70 1.43 0.71

0.45 63.0841 1528 1342 0.65 1.48 0.67

0.5 53.7383 1432 1424 0.61 1.53 0.62

0.55 54.2056 1362 1550 0.58 1.57 0.59

0.6 50.9346 1259 1639 0.54 1.64 0.55

0.65 47.1963 1178 1720 0.50 1.69 0.51

0.7 43.9252 1072 1840 0.46 1.77 0.47

0.75 45.7944 1017 1909 0.44 1.81 0.44

0.8 45.3271 940 2056 0.40 1.87 0.41

0.85 35.514 852 2116 0.37 1.95 0.37

0.9 35.9813 751 2175 0.32 2.05 0.33

0.95 33.6449 645 2211 0.28 2.16 0.28

0

20

40

60

80

100

120

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 7. Pruning-accuracy graph for glass.

0

20

40

60

80

100

120

140

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 8. Pruning-accuracy graph for heart.

47

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

TABLE V. BENCHMARKING RESULTS - HEART.

Target ACC NZV ZV Reduction Speed-up Memory

0 85.1852 1668 68 1.00 1.03 1.20

0.05 83.7037 1576 132 0.94 1.08 1.13

0.1 84.8148 1501 207 0.90 1.12 1.08

0.15 84.4444 1426 282 0.85 1.16 1.03

0.2 85.5556 1343 365 0.81 1.21 0.97

0.25 85.1852 1263 431 0.76 1.26 0.91

0.3 84.8148 1214 522 0.73 1.30 0.87

0.35 84.4444 1104 590 0.66 1.39 0.79

0.4 82.5926 1032 662 0.62 1.45 0.74

0.45 82.5926 978 758 0.59 1.50 0.70

0.5 82.2222 924 854 0.55 1.56 0.67

0.55 83.7037 870 964 0.52 1.62 0.63

0.6 81.8519 804 1072 0.48 1.70 0.58

0.65 81.4815 725 1151 0.43 1.80 0.52

0.7 82.963 643 1247 0.39 1.93 0.46

0.75 84.4444 562 1342 0.34 2.07 0.40

0.8 80.7407 485 1489 0.29 2.23 0.35

0.85 76.2963 415 1643 0.25 2.39 0.30

0.9 76.2963 314 1702 0.19 2.68 0.23

0.95 76.2963 302 2526 0.18 2.71 0.22

TABLE VI. BENCHMARKING RESULTS - WINE.

Target ACC NZV ZV Reduction Speed-up Memory

0 98.3146 1351 74 1.00 1.04 1.19

0.05 98.3146 1287 138 0.95 1.08 1.13

0.1 98.8764 1241 199 0.92 1.11 1.09

0.15 98.3146 1183 257 0.88 1.15 1.04

0.2 99.4382 1138 332 0.84 1.18 1.00

0.25 98.8764 1056 384 0.78 1.25 0.93

0.3 98.8764 1003 452 0.74 1.29 0.88

0.35 98.8764 939 501 0.70 1.35 0.82

0.4 97.7528 876 564 0.65 1.42 0.77

0.45 97.7528 824 646 0.61 1.48 0.72

0.5 97.7528 799 731 0.59 1.51 0.70

0.55 96.6292 750 825 0.56 1.57 0.66

0.6 96.0674 695 895 0.51 1.64 0.61

0.65 96.0674 629 946 0.47 1.75 0.55

0.7 94.9438 601 1079 0.44 1.79 0.53

0.75 96.0674 545 1165 0.40 1.89 0.48

0.8 93.2584 548 1462 0.41 1.89 0.48

0.85 92.1348 517 1673 0.38 1.95 0.45

0.9 94.382 502 1958 0.37 1.98 0.44

0.95 70.2247 424 2141 0.31 2.16 0.37

0

20

40

60

80

100

120

140

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 9. Pruning-accuracy graph for wine.

0

20

40

60

80

100

120

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 10. Pruning-accuracy/size graph for mush.

48

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

TABLE VII. BENCHMARKING RESULTS – MUSH.

Target ACC NZV ZV Reduction Speed-up Memory

0 99.2122 17766 77832 1.00 4.67 0.23

0.05 99.2614 17120 79608 0.96 4.82 0.22

0.1 99.5076 16701 82626 0.94 4.92 0.22

0.15 99.0153 15732 83030 0.89 5.17 0.21

0.2 99.0153 14908 84193 0.84 5.40 0.19

0.25 96.8488 22336 135412 1.26 3.85 0.29

0.3 96.8488 21000 137200 1.18 4.06 0.27

0.35 96.4549 20551 145333 1.16 4.13 0.27

0.4 93.4023 23660 182000 1.33 3.66 0.31

0.45 92.6145 24023 202203 1.35 3.61 0.31

0.5 92.4175 22055 204510 1.24 3.89 0.29

0.55 92.4175 20129 207340 1.13 4.21 0.26

0.6 92.4175 18098 209145 1.02 4.60 0.24

0.65 92.4175 16184 212415 0.91 5.05 0.21

0.7 92.4175 14273 216134 0.80 5.60 0.19

0.75 92.4175 12329 219886 0.69 6.29 0.16

0.8 92.4668 11279 243649 0.63 6.74 0.15

0.85 90.9404 10431 284273 0.59 7.15 0.14

0.9 76.2186 14553 533610 0.82 5.51 0.19

0.95 69.03 11607 644245 0.65 6.59 0.15

TABLE VIII. BENCHMARKING RESULTS - USPS.

Target ACC NZV ZV Reduction Speed-up Memory

0 91.7289 668262 15438 1.00 1.02 1.22

0.05 91.5795 637712 48638 0.95 1.07 1.17

0.1 91.7788 607076 82189 0.91 1.12 1.11

0.15 91.7289 593198 119652 0.89 1.15 1.08

0.2 91.8784 563577 155368 0.84 1.21 1.03

0.25 91.6791 535909 192576 0.80 1.27 0.98

0.3 91.1809 525131 239129 0.79 1.30 0.96

0.35 89.3373 488840 276215 0.73 1.39 0.89

0.4 85.999 464114 321611 0.69 1.46 0.85

0.45 80.5182 446167 376658 0.67 1.52 0.82

0.5 76.8809 402136 411149 0.60 1.68 0.74

0.55 73.8416 396460 492880 0.59 1.71 0.72

0.6 71.4001 366015 554860 0.55 1.84 0.67

0.65 67.713 331885 617345 0.50 2.03 0.61

0.7 64.3747 302437 701118 0.45 2.22 0.55

0.75 60.289 268751 794429 0.40 2.48 0.49

0.8 56.2033 236489 920236 0.35 2.81 0.43

0.85 53.0144 203762 1097918 0.30 3.24 0.37

0.9 43.4479 161777 1319573 0.24 4.03 0.30

0.95 34.3797 102880 1517065 0.15 6.11 0.19

0

20

40

60

80

100

120

140

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 11. Pruning-accuracy/size graph for USPS.

0

10

20

30

40

50

60

70

80

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 12. Pruning-accuracy/size graph for poker.

49

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

TABLE IX. BENCHMARKING RESULTS - POKER.

Target ACC NZV ZV Reduction Speed-up Memory

0 50.1209 263110 177766 1.00 1.40 0.75

0.05 50.1209 251772 189237 0.96 1.44 0.71

0.1 50.1209 240094 201181 0.91 1.48 0.68

0.15 50.1209 228739 212593 0.87 1.52 0.65

0.2 50.1209 216969 224534 0.82 1.57 0.62

0.25 50.1209 205778 235972 0.78 1.62 0.58

0.3 50.1209 193716 247730 0.74 1.67 0.55

0.35 50.1209 184629 263258 0.70 1.71 0.52

0.4 50.1209 173009 276816 0.66 1.77 0.49

0.45 42.2479 161326 291083 0.61 1.83 0.46

0.5 50.1209 137262 276273 0.52 1.97 0.39

0.55 42.1724 109096 243696 0.41 2.16 0.31

0.6 42.0758 86266 220869 0.33 2.35 0.24

0.65 42.2498 68480 190110 0.26 2.52 0.19

0.7 50.1209 67689 224588 0.26 2.53 0.19

0.75 50.1209 56531 211977 0.21 2.65 0.16

0.8 50.1209 51010 224357 0.19 2.71 0.14

0.85 42.0069 51019 299227 0.19 2.71 0.14

0.9 38.8308 53604 381591 0.20 2.68 0.15

0.95 32.0346 42312 393415 0.16 2.82 0.12

TABLE X. BENCHMARKING RESULTS - MNIST.

Target ACC NZV ZV Reduction Speed-up Memory

0 93.13 3440972 14928526 1.00 5.22 0.23

0.05 93.19 3327687 15075738 0.97 5.40 0.23

0.1 93.17 3208746 15290148 0.93 5.59 0.22

0.15 93.14 3087787 15586265 0.90 5.80 0.21

0.2 93.1 2971934 15994048 0.86 6.02 0.20

0.25 93.04 2849282 16457548 0.83 6.27 0.19

0.3 92.94 2731426 17046437 0.79 6.53 0.19

0.35 92.66 2621558 17803285 0.76 6.80 0.18

0.4 92.23 2521740 18763902 0.73 7.06 0.17

0.45 91.91 2422939 19861701 0.70 7.34 0.16

0.5 91.65 2328891 21211033 0.68 7.62 0.16

0.55 91.31 2238182 22831250 0.65 7.92 0.15

0.6 90.81 2131474 24569118 0.62 8.30 0.15

0.65 90.28 2028023 26782833 0.59 8.70 0.14

0.7 89.47 1909403 29330857 0.55 9.22 0.13

0.75 87.18 1765278 32266078 0.51 9.93 0.12

0.8 83.78 1593953 35528837 0.46 10.94 0.11

0.85 76.85 1370830 38833718 0.40 12.60 0.09

0.9 71.66 1118770 42109334 0.33 15.22 0.08

0.95 52.75 851145 45191695 0.25 19.53 0.06

0

10

20

30

40

50

60

70

80

90

100

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

Fig. 13. Pruning-accuracy/size graph for MNIST.

Fig. 14. Pruning-accuracy/size graph for CIFAR.

50

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

TABLE XI. BENCHMARKING RESULTS - CIFAR.

Target ACC NZV ZV Reduction Speed-up Memory

0 34.54 146841985 519164 1.00 1.00 1.25

0.05 34.52 139261741 7840604 0.95 1.06 1.18

0.1 34.66 131545686 15112995 0.90 1.12 1.12

0.15 34.69 124122919 22384793 0.85 1.19 1.05

0.2 34.36 116487853 29582357 0.79 1.26 0.99

0.25 34.57 109412240 36910612 0.75 1.35 0.93

0.3 34.71 102270755 44246200 0.70 1.44 0.87

0.35 34.09 95169529 51633959 0.65 1.55 0.81

0.4 32.94 87929910 58975251 0.60 1.67 0.75

0.45 31.13 80650407 66300969 0.55 1.83 0.68

0.5 29.61 73396121 73660009 0.50 2.01 0.62

0.55 28.03 66172232 81078001 0.45 2.22 0.56

0.6 27.22 58899163 88468148 0.40 2.50 0.50

0.65 26.75 51637803 95911287 0.35 2.85 0.44

0.7 26.79 44419751 103514464 0.30 3.31 0.38

0.75 26.03 37189070 111228862 0.25 3.95 0.32

0.8 21.81 29947728 119132619 0.20 4.90 0.25

0.85 17.2 22699792 127418852 0.15 6.45 0.19

0.9 14.61 15343490 135699454 0.10 9.50 0.13

0.95 15.64 7944104 144679393 0.05 18.14 0.07

TABLE XII. BENCHMARKING RESULTS - SVHN.

Target ACC NZV ZV Reduction Speed-up Memory

0 13.7754 205086232 191555 1.00 1.00 1.25

0.05 13.9098 194957987 10421473 0.95 1.05 1.19

0.1 14.2555 185743497 20763609 0.91 1.11 1.13

0.15 14.6512 176805075 31288746 0.86 1.16 1.08

0.2 15.7345 168223458 42101007 0.82 1.22 1.02

0.25 16.9215 160214044 53407091 0.78 1.28 0.98

0.3 18.5925 151307562 64803021 0.74 1.36 0.92

0.35 20.3058 141372009 76026432 0.69 1.45 0.86

0.4 20.8666 131534404 87530858 0.64 1.56 0.80

0.45 20.8052 121352380 99056198 0.59 1.69 0.74

0.5 20.2597 110768233 110447567 0.54 1.85 0.67

0.55 20.1099 99798629 121546573 0.49 2.05 0.61

0.6 20.179 88701366 132486705 0.43 2.31 0.54

0.65 20.3365 77667657 143501928 0.38 2.64 0.47

0.7 20.3288 66544984 154301096 0.32 3.08 0.41

0.75 20.3941 55487560 165164417 0.27 3.69 0.34

0.8 20.4057 44471245 176088302 0.22 4.59 0.27

0.85 20.2674 33512888 187262329 0.16 6.08 0.20

0.9 19.3838 22619933 199199743 0.11 8.98 0.14

0.95 18.5426 11648912 211649644 0.06 17.25 0.07

Fig. 15. Pruning-accuracy/size graph for SVHN.

The first column in the tables II–XII specifies the desired

reduction in the size of the input dataset. The first row

represents the SVM model trained without any pruning. The

second column (“ACC”) represents the accuracy of the

trained SVM model. The third column (“NZV”) presents the

number of non-zero attributes in the support vectors, while

the fourth (“ZV”) contains the number of zero attributes

introduced during the pruning process.

The fifth column (“Reduction”) presents the relative size

of the trained sparse SVM model compared to the original

dense SVM model size shown in the first row of each table.

This column shows how effective the pruning of SVM

modules is when the AST-SVM algorithm. In an ideal case,

the value of this column should be equal to 1 - “Target”

value specified in the first column, but this is rarely the case.

The reason for this is that when the input dataset is pruned,

more support vectors are usually needed to achieve better

accuracy as it was described in Chapter II. As Tables II-XII

51

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

indicate, the reduction in the size of the trained SVM

module is almost always possible. Please notice, when the

reduction in trained SVM size is possible, it is always less

than the specified target reduction value.

For some of the datasets, the reduction of the size of the

trained SVM model can even help to achieve better

classification accuracy. This is the case with the SVHN

dataset, which is the biggest dataset in the experiments. In

this case, the sparse SVM model can be almost 2 times

smaller and achieve accuracy, which is over 7 % better than

the accuracy of the dense SVM model. One explanation for

this unexpected behavior could be that the input dataset

contains a lot of noise in the data, which pruning helps to

eliminate.

The sixth column shows the speed-up that is possible to

achieve when using ASA-SVM architecture, compared to

RMLC architecture, to implement the SVM model. With the

reduction of trained SVM model size, fewer operations are

needed to classify input instance. Every multiplication with

the zero-valued support vector attribute can be skipped in

the ASA-SVM accelerator, resulting in better performance

and better energy usage. Please notice, that for some

datasets, the original model also contains some zeros in its

support vectors. In these cases, even without the pruning

ASA-SVM architecture would enable speed-up over

previously proposed RMLC architecture. From the Tables

II–XII, it can be concluded that the speed-up between 1.17

and 7.92 is possible, taking into account the accepted

classification accuracy reduction of 2 % during the SVM

pruning process.

The seventh column shows achievable relative memory

reduction, when only the NZVs of pruned SVM model are

stored, together with their increment values, compared to

memory size required to store the dense SVM model.

Values greater than one indicate that memory usage is being

increased, while values smaller than one represent a

situation when memory footprint is decreased. In case when

dense SVM model doesn’t contain the significant number of

zero-valued support vector attributes, and the SVM pruning

percentage is close to zero percent, the memory size

required to store SVM model parameters will increase. This

is because every NZV value has to be stored together with

its corresponding increment value. In this case, a significant

number of support vector attribute values will be different

from zero, and the increments will be just additional

information needed to be stored without any benefit to

speeding up the instance classification process. However,

when the SVM model can be pruned with higher pruning

rates, a significant reduction in memory will be possible.

With the accepted trained SVM accuracy drop of 2 %

compared to the dense SVM model, it can be concluded

from the data shown in Tables II–XII that the SVM size

memory reduction from 3 % up to 85 % is achievable.

V. CONCLUSIONS

This paper proposes a novel algorithm for training of

sparse SVM models, called AST-SVM, and a hardware

architecture for the acceleration of sparse SVM models,

called ASA-SVM, which can take advantage of sparse

SVMs and achieve better performance compared to the

previously proposed hardware architectures that accelerate

only dense SVMs.

Performed experiments, using 20 standard datasets,

clearly indicate that using sparse over dense SVMs has two

advantages, the memory size required to store the SVM

model is reduced, and the input instances are processed

faster.

When created SVM model size is considered, a reduction

from 3% to 85% is possible, when using sparse instead of

dense SVMs.

Additionally, the experiments clearly show that the sparse

SVM models enable faster instance processing when using

the hardware accelerator specifically designed to process

sparse SVMs. Instance processing time speedup from 1.17

to 7.92 was reported on selected datasets.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] C. Cortes and V. Vapnik, “Support-vector networks“, Mach. Learn.

vol. 20, pp. 273–297, 1995. DOI: 10.1007/BF00994018.

[2] X.-X. Niu and Ch. Y. Suen, “A novel hybrid CNN-SVM classifier for

recognizing handwritten digits”, Pattern Recogn., vol. 45, no. 4, pp.

1318–1325, Apr. 2012. DOI: 10.1016/j.patcog.2011.09.021.

[3] M. Elleuch, R. Maalej, and M. Kherallah, “A new design based-SVM

of the CNN classifier architecture with dropout for offline Arabic

handwritten recognition”, Procedia Comput. Sci., vol. 80, pp. 1712–

1723, Jun. 2016. DOI: 10.1016/j.procs.2016.05.512.

[4] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge,

Cambridge Univ. Press, 2000. DOI: 10.1017/CBO9780511801389.

[5] U. Kressel, “Pairwise classification and support vector machines”, in

Advances in Kernel Methods: Support Vector Learning. MIT Press,

Cambridge, MA, USA, 1999, pp. 255–268.

[6] J. Platt, “Sequential minimal optimization: A fast algorithm for

training support vector machines”, Technical Report MSR-TR-98-14,

Apr. 1998.

[7] R. Fan, P. Chen, and C. Lin, “Working set selection using second

order information for training SVM”, Journal of Machine Learning

Research, vol. 6, pp. 1889–1918, 2005.

[8] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and J. Chen,

“Compressing neural networks with the hashing trick”, in Proc. of

International Conference on Machine Learning, vol. 37, 2015, pp.

2285–2294. arXiv: 1504.04788.

[9] S. Han, H. Mao, and W. J. Dally. “Deep compression: Compressing

deep neural network with pruning, trained quantization and Huffman

coding”, in Proc. of 4th International Conference on Learning

Representations, ICLR 2016, San Juan, Puerto Rico, May 2016.

arXiv: 1510.00149.

[10] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and

connections for efficient neural network”, in in Proc. of NeurIPS 2015

Twenty-ninth Conference on Neural Information Processing Systems,

2015, pp. 1135–1143. arXiv:1506.02626.

[11] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x

fewer parameters and < 0.5 mb model size”, in Proc. of 5th

International Conference on Learning Representations, 2017.

arXiv:1602.07360.

[12] S. S. Keerthi, O. Chapelle, and D. DeCoste, “Building support vector

machines with reduced classifier complexity”, Journal of Machine

Learning Research, vol. 7, pp. 1493–1515, 2016.

[13] C. J. Burges and B. Scholkopf, “Improving the Accuracy and Speed

of Support Vector Machines”, in Advances in neural information

processing systems 1997 pp. 375-381.

[14] D. Anguita, A. Boni, and S. Ridella, “A digital architecture for

support vector machines: Theory, algorithm, and FPGA

implementation”, IEEE Transactions on Neural Networks, vol. 14, no.

5, pp. 993–1009, 2003. DOI: 10.1109/TNN.2003.816033.

[15] D. Anguita, L. Carlino, A. Ghio, and S. Ridella, “A FPGA core

generator for embedded classification systems”, Journal of Circuits,

Systems, and Computers, vol. 20, no. 2, pp. 263–282, 2011. DOI:

10.1142/S0218126611007244.

[16] M. Davood, A. Soleimani, H. Khosravi, and M. Taghizadeh, “FPGA

simulation of linear and nonlinear support vector machine”, Journal

52

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 3, 2020

of Software Engineering and Applications, vol. 4, no. 5, pp. 320–328,

2011. DOI: 10.4236/jsea.2011.45036.

[17] M. Papadonikolakis and C. Bouganis, “Novel cascade FPGA

accelerator for support vector machines classification”, IEEE

Transaction on Neural Networks Learning Systems, vol. 23, no. 7, pp.

1040–1052, 2012. DOI: 10.1109/TNNLS.2012.2196446.

[18] C. Kyrkou and T. Theocharides, “A parallel hardware architecture for

real-time object detection with support vector machines”, IEEE

Transactions on Computers, vol. 61, no. 6, pp. 831–842, 2012. DOI:

10.1109/TC.2011.113.

[19] V. Vranković and R. Struharik, “New architecture for SVM classifier

and its application to telecommunication problems”, in Proc of. 19th

Telecommunications Forum (TELFOR), Belgrade, 2011, pp. 1543–

1545. DOI: 10.1109/TELFOR.2011.6143852.

[20] V. Vranjkovic, R. Struharik, and L. Novak, “Reconfigurable hardware

for machine learning applications”, Journal of Circuits, Systems, and

Computers, vol. 24, no. 5, 2015. DOI: 10.1142/S0218126615500644.

[21] “Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit”,

XILINX. [Online]. Available:

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-

g.html

[22] “LIBSVM - A Library for Support Vector Machines”. [Online].

Available: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

[23] “LIBSVM Data: Classification, Regression, and Multi-label”.

[Online]. Available:

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

53

