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Abstract—Virtual machine technology enables the cloud to 

offer large scale and flexible computing ability. However, it also 

introduces a range of new vulnerabilities. Malicious users can 

extract sensitive information from other users covertly via side 

channel attacks, which breaks the isolation between the virtual 

machines (VMs). In this paper, we investigate such a security 

threat and propose the VMs Co-residency Detection Scheme via 

cache-based side channel attacks (VCDS) to get the location of 

the specified VM. Using load pre-processor based on cubic 

spline interpolation, VCDS makes the raw measurements more 

smoothing and relevant. With the load predictor based on linear 

regression model, VCDS probes cache load changes produced by 

the victim VM more accurately. Based on the normal cloud 

model, VCDS computes the co-residency probability to describe 

VMs co-residency quantitatively. The experimental results show 

that VCDS improves the true detection rate even with the 

interference of the co-resident noisy VM compared to the 

existing schemes. 

 
Index Terms—Cloud computing, virtual machine, side 

channel attack, co-residency detection. 

I. INTRODUCTION 

Cloud computing, an emerging computing and service 

paradigm, in which the core computing and software 

capabilities are outsourced on demand, offers the prospect of 

lower costs, lighter administrative burdens and more 

convenient user experiences. However, it also introduces new 

security challenges, such as data privacy [1] and VM (Virtual 

Machine) security [2], which severely hinder the development 

of the cloud computing. 

Based on the logical isolation between VMs, access control 

mechanisms are proposed to guarantee security of the cloud. 

However, information leak persists. It is mainly introduced by 

the vulnerabilities caused by the sharing of hardware 
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resources, e.g. CPU cache, main memory, network traffic, etc., 

which lead to side channel attacks [3]. Malicious users can 

extract private information from other co-resident VMs 

covertly by analyzing the responses of sharing resources, such 

as computing time, power consumption, etc. 

The focus of this paper is to reveal the threats introduced by 

cache-based side channel attacks in the cloud. VMs 

co-residency detection via side channel attacks aims to get the 

location of the victim VM by analyzing the responses of the 

shared cache. The attack is harmful to both the service 

providers and common users of cloud computing. To the 

service providers, adversary can undermine the 

location-dependent features of the cloud, due to the leakage of 

location. For example, how many VMs exist in the cloud and 

where the VMs are applied, etc. To the common users, 

disclosure of VMs location means that the isolation between 

VMs is broken. Therefore, on the one hand, adversary may 

launch more specific side channel attacks to steal private 

information. On the other hand, victim VMs are more likely to 

suffer from the intrusion attacks, such as DDOS. 

Side channel attacks in cloud have been investigated 

recently [4], [5]. However, to the best of our knowledge, they 

are still limited in the following two aspects. First, they pay 

less attention to the interferences introduced by the VMs 

which reside in the same host with the malicious VM, which 

has impact on the success rate of cache-based side channel 

attacks. Second, the noises introduced by the hardware 

features and software features, such as TLB (Translation 

Lookaside Buffers) misses, hardware prefetching, VMM 

(Virtual Machine Monitor) scheduling, etc., are ignored by 

the existing work as well, which make the raw measurements 

are extremely variable. 

To overcome these limitations, a novel VMs Co-residency 

detection scheme via cache-based side channel attacks 

(VCDS) is presented. In VCDS, load preprocessor based on 

cubic spline interpolation and load predictor based on linear 

regression are proposed to process the raw measurements; 

co-residency probability computing algorithm is designed to 

calculate the probability of VMs co-residency; detection rules 

are put forward to determine the results. The experimental 
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results show that our proposed scheme is feasible and 

effective. 

II. CACHE-BASED SIDE CHANNEL ATTACKS IN CLOUD 

In the multi-core CPU architecture, data cache, used to 

improve the computing speed, is shared by different cores. So, 

data cache is shared by the VMs residing in the same physical 

machine (same with host in the following). Moreover, 

administrator privilege is not needed to change cache load. 

Therefore, data cache can be used to construct a side channel. 

Before detailing the cache-based side channel attacks in the 

cloud, we divide VMs into three roles in the attack scenario. 

They are malicious VM, victim VM and noisy VM, 

respectively. Malicious VM belongs to the attacker, which 

probes and analyzes cache activities. Victim VM is the attack 

target. Noisy VM resides in the same host with the malicious 

VM, which interferes with the attack. 

Commonly, cache-based side channel attacks consist of two 

major steps: (1) measuring the cache load and (2) analyzing 

the cache load to extract the private information. 

The key issue of the first step is to exploit the timing 

differences in access latencies between cache and main 

memory. The load measurement generation method is the 

Prime-Probe [4] including the following steps: 

1) Prime: Malicious VM allocates a contiguous buffer of 

b bytes and fills the entire cache by reading the buffer at 

s-byte offsets. Here, b should be larger than cache size; s is 

the cache line size; 

2) Wait: Malicious VM waits for a pre-specified time 

interval. In this interval, cache is used by other co-resident 

VMs, hopefully in favor of the victim VM; 

3) Probe: Malicious VM reads the buffer at s-bytes 

offsets again and measures the time. 

When reading the buffer, pointer-chasing technique [6], [7] 

is used to mitigate the affections of hiding of access latencies 

incurred by hardware pre-fetcher. 

The time of the final step’s read is the load measurement, 

measured in number of CPU cycles. The load measurement 

will be strongly correlated with the use of cache during the 

Wait step, since that usage of cache evicts some portion of the 

buffer and thereby drives up the read time during the Probe 

phase. 

If there is much cache activity from victim VM during the 

probing interval, malicious VM’s data is likely to be evicted 

from the cache and replaced with data accessed by victim VM, 

which results in a noticeably higher timing measurement. 

Therefore, high timing measurement implies that cache is 

heavy load and victim VM is busy; while the low one implies 

that cache is light load and victim VM is idle. 

In this paper, we assume that victim VM provides public 

services, such that any user can access the services. We 

believe that such an assumption is feasible, since the 

malicious users are always interested in the public service 

providers. Therefore, malicious VM can burden victim VM’s 

computational load by accessing the public services. After the 

computation produced by accessing the service, cache load 

will decrease. Malicious user can get three cache load 

measurements sets which are sampled before, during and after 

accessing the victim VM’s service, respectively. Ultimately, 

malicious user can get the private information by analyzing 

differences of the three load sets. Consequently, side channel 

attacks in cloud computing can be converted to the matter of 

computing the similarity of cache load sets. 

III. VMS CO-RESIDENCY DETECTION SCHEME 

In this section, VCDS is detailed, which takes as its input 

three cache load measurements sets. The first set is obtained 

before accessing the services of victim VM, marked as First 

cache load set, short for Fcl=(fcl1,fcl2,…, fcln). The second set 

is probed when victim VM is doing the computation produced 

by accessing the service, marked as Second cache load set, 

short for Scl=(scl1, scl2,…,scln). The third set is probed after 

the end of the service computation, marked as Third cache 

load set, short for Tcl=(tcl1, tcl2, …, tcln). 

input

Fcl

Scl

Tcl

raw measurement processing

Load Preprocessor

distinguisher

Co-residency probability

detection rules

output

Co-residency 

?
Load Predictor

 
Fig. 1.  Illustrated process of co-residency detection scheme. 

VCDS consists of two major modules which are raw 

measurement processing and distinguisher. The processes are 

illustrated in Fig. 1. The major steps include: 

Step 1. Load preprocessor takes as its inputs Fcl, Scl and 

Tcl, and returns Fcl
1
, Scl

1
 and Tcl

1
 which respectively 

represent the load trend of Fcl, Scl and Tcl. 

Step 2. Load predictor takes as its inputs Fcl
1
 and Scl

1
 

respectively, and returns Fcl
2 

and 2
1Scl , which are the 

estimated caches load in the near future for Fcl
1
 and Scl

1
. 

Meanwhile, choosing specified elements from Scl
1
 and Tcl

1
 

to construct 2
2Scl  and Tcl

2
, where the timestamps of 2

2Scl  

and Tcl
2 

are respectively same with the timestamps of Fcl
2  

and 2

1
Scl . 

Step 3. Obtain 3Fcl , 3
1Scl , 3

2Scl  and 3Tcl  according to 

2Fcl , 2
1Scl , 2

2Scl and 2Tcl , based on the normal cloud model 

[8]. Fcl
3
 includes twofold information of the load value and its 

membership degree. And the same to 3
1Scl , 3

2Scl  and Tcl
3
. 

Step 4. Distinguisher takes as its inputs Fcl
3
, 3

1Scl , 

3
2Scl and Tcl

3
, and returns the result based on the 

co-residency probability computing algorithm and the 

detection rules. 

A. Load pre-processor based on cubic spline interpolation 

Load preprocessor is used to filter out the noises and yield a 

more regular view about the load trend. The necessity of load 

preprocessor is twofold. First, the raw measurements, which 

are variable due to the noises existing in the system, should 

get smoothing. Second, the correlation between the raw 

measurements should be strengthened, which leads to a more 

accurate prediction value. 

Cubic Spline Interpolation (CSI) is considered to be a 

representative example of a non-linear numerical data 

analysis tool. Lower-order curves (with a degree less than 3) 

do not react quickly to load changes, while high-order curves 
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(with a degree higher than 3) are considered unnecessary 

complex, introduce undesired wiggles and are 

computationally too expensive. 

For the definition of the cubic spline interpolation, some 

control points (tj, clj) in the set of measured cache load should 

be chose firstly, where tj is the time of measurement of clj. A 

cubic spline interpolation function CS
J
(t), based on J control 

points, is a set of J-1 piecewise third-order polynomials pj(t), 

where j∈[1, J-1], with the following form 

 

1 1 2

2 2 3

1 1

( ), ,

( ), ,
( )

...

( ), ,

J

J J J

p cl cl cl cl

p cl cl cl cl
CS cl

p cl cl cl cl− −

≤ <
 ≤ <

= 

 ≤ <

   (1) 

where pi (i=1,2,…,J-1) is a third-order polynomial defined in 

(2) 

 3 2( ) ( ) ( ) ( )i i i i i i i ip cl a cl cl b cl cl c cl cl d= − + − + − +    (2) 

and CS
J
(t) should satisfy the following two properties. 

Property 1. The piecewise third-order polynomials CS
J
(t) 

will interpolate all data points. 

Property 2. CS
J
(t), CS

J’
(t) and CS

J’’
(t) will be continuous on 

the interval [cli, cln]. 

If we apply both properties, we can obtain the solution of ai, 

bi, ci and di as the following from: 

 

1

1 1

( ) / 6 ,

/ 2,

( ) / ( 2 ) / 6 ,

,

i i i

i i

i i i i i

i i

a x x h

b x

c cl cl h x x h

d cl

+

+ +

= −
 =


= − − +
 =

     (3) 

where h=li-li-1, and xi can be got via the matrix equation: 
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Note that this system has J-2 rows and J columns, and is 

therefore under-determined. With the natural splines which 

defines that x1=xJ=0, we can obtain the deterministic solution 

of the matrix equation eventually. 

The CSI-based load preprocessor returns a new value after 

n cache load measures. Moreover, the cubic spline has the 

advantage of being reactive to load changes and independent 

of cache load metrics and workload characteristic. 

Ultimately, the set consisting of cache load trend values is 

obtained, which is defined as L= (l1,l2,…,lk), whose 

corresponding timestamp set is T=(t1,t2, …,tk). 

B. Load predictors based on linear regression 

Load predictor is used to estimate the cache load in the near 

future, which plays a significant role in our proposed scheme. 

Through rendering the predictor, the detection scheme 

responds to the sudden changes of the system running state 

more effectively. The key issue is to improve the prediction 

accuracy. 

To improve the accuracy of load prediction, the correlation 

between raw measurements should be strengthened. Existing 

work [7] shows that the correlation coefficient will get larger 

after the process of CSI-based preprocessor. Therefore, the 

load predictor defined in the paper takes as its input a set of 

load trend values L(ti) and returns a load trend value at time 

ti+w. Therefore, a predicted load value set � 1 2( , ,..., )vL l l l= ɶ ɶ ɶ  

will be obtained, where v is the number of predicted values.  

In this section, we consider the load predictor as a linear 

system, so that the predictor LPw(L(ti)) based on the linear 

regression is used. The predictor is characterized by a couple 

of parameters: the prediction window w, which represents the 

size of prediction interval, and the past time window q, which 

is the size of load trend value set. Then the first trend value li-q 

and the last li are considered. LPw(L(ti)) is the line that 

intersects the two points (li-q, ti-q) and (li, ti), and returns i wl +
ɶ   

that is the predicted value at time ti+w 

 ( ( )) ,w i i wLP L t tγ λ+= +    (5) 

where ( ) /γ −= −i i ql l q , and λ γ− −= −i q i ql t . 

C. Determination of co-residency probability 

In the ideal case, detection result is a definite concept 

which has only two values: yes and no. However, in the real 

environments, the detection result is fuzzy because of the 

influence of various factors. Therefore, in this section, based 

on the similarity degree of normal cloud model, we put 

forward co-residency probability to quantitatively 

characterize the possibility of co-residency. The similarity 

degree refers to the distance between two normal cloud 

models. The closer distance between the two normal cloud 

models, the larger membership degree of the cross points will 

be obtained. Therefore, we take the membership degree to 

quantify the similarity degree. 

Definition 1. Similarity degree (µsim) between normal cloud 

model C
1
 and C

2
 is the maximum membership degree of the 

crossing points of the two normal cloud models, whose 

definition domain is [0, 1]. 

According to the 3En principle, the crossing points should 

fall in the interval [Ex1-3En1, Ex1+3En1] or [Ex2-3En2, 

Ex2+3En2]. Ex1 and En1 refers to the expectation and entropy 

of C
1
, and Ex2 and En2 refers to the expectation and entropy of 

C
2
. In the following two cases, the similarity degree is defined 

to be 0. (1) Both of the two crossing points are not in the 

intervals. (2) There are no crossing points between C
1
 and C

2
. 

Definition 2. Co-residency probability (µ) is defined as 

µ=1-µsim, which decreases with the increase of similarity 

degree and is used to quantify the possibility that malicious 

VM and victim VM are co-resident. 
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The co-residency probability computing algorithm consists 

of the following steps: 

Step 1. Use (6)-(8) to compute the estimated value of key 

parameters of normal cloud model [8], which are Ex, En and 

He respectively. Ex refers to the mathematical expectation of 

the cloud model. En refers to entropy of the cloud model, 

representing the uncertainty measurement of a qualitative 

concept. He refers to the hyper-entropy of cloud model, 

representing the uncertain degree of entropy: 

 
1

1
,i

i v

Ex l
v ≤ ≤

= ∑              (6) 

 �

1

1
x ,

2
i

i v

En l E
n

π
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= −∑                          (7) 
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1
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1
i
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−

∑               (8) 

Step 2. Use forward normal cloud generator algorithm to 

obtain both C
1
 and C

2 
based on these estimators. Limited to 

the length of paper, we will not deepen further the algorithm 

here. Readers who are interested can read [8]. 

Step 3. Compute two crossing points: cp1 and cp2: 

 

2 1 1 2
1

1 2

1 2 2 1
2

1 2

,

.

Ex En Ex En
cp

En En

Ex En Ex En
cp

En En

−
= −


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 +

                (9) 

Step 4. Compute the membership degree of cp1 and cp2 

respectively 

 

2

2

( )

2( * )( ) .

x Ex

En
C x e αµ

−
−

=     (10) 

Compared to the classical definition of membership degree 

function, we introduce a new ingredient in (10), which is 

denoted as α and makes the similarity computing dynamically 

adapts to different systems built on different hardware 

platforms. 

Step 5. Compute the similarity degree µsim of by computing 

the higher value of 1 1
( )µ

C
cp  and 1 2

( )µ
C

cp , which is 

defined in (11) 

 1 11 2
( ( ), ( )).sim C C

Max cp cpµ µ µ=      (11) 

Step 6. Compute the co-residency probability which is 

defined as 1µ µ= − sim . 

D. Determination Rule 

As stated above, there are significant differences between 

the cache load changes when the VMs are co-resident and are 

not co-resident. Therefore, the threshold value (η) of 

co-residency probability can be used to classify the 

co-residency probability. 

In this paper, we get three cache load sets, corresponding to 

three different stages during the process of accessing to the 

victim VM’s services. We calculate ρ1 and ρ2 to depict the 

cache load changes produced by the victim VM. In the ideal 

case, if the malicious VM is co-resident with the  victim 

VM, both of the two co-residency probabilities should be 

larger than η. Moreover, the expectation of the second load set 

should not be smaller than the expectation of the first and third 

set. Therefore, we illustrate the determination conditions as 

follows: 

 1 ,ρ η≥  (12) 

 2ρ η≥
,  (13) 

 3 3
2

,
Fcl Scl

Ex Ex≥  (14) 

 3 3
1Scl Tcl

Ex Ex≥ .  (15) 

Finally, we conclude the determination rule: if all the four 

conditions are satisfied simultaneously, the victim VM is 

co-resident with the malicious VM; otherwise, they are not 

co-resident. 

IV. EXPERIMENTS 

The overall evaluation of the proposed scheme comprised 

of (1) experiments to verify the feasibility of our co-residency 

detection scheme in a virtualized computing environment and 

(2) experiments to compare our proposed scheme with the 

existing method to evaluate the efficacy. 

All the experimental data were collected from our cloud 

computing platform based on KVM, which consists of 30 

physical servers. The hardware configurations for each server 

are: Intel Xeon 2.13GHz CPU, 8GB main memory and 

500GB hard disk. Ubuntu Linux was run in each VM. 2 

VCPU, 512MB main memory and 8 GB hard disk were 

allocated to each VM. There were two kinds of applications 

running in the VMs. They were web server based on apache2 

and file encryption based on RSA, which were web-intensive 

and computation-intensive applications. When the web server 

was deployed, JMeter was used to simulate multi-users to 

access the web site. 

In this section, we considered three different cache load 

scenarios. 

1) Steady scenario, S-scenario for short, described the 

situation that the running state of noisy VM was not 

changed, where the running state included “run” and 

“stop”. “Run” referred that VM was launched and “stop” 

referred that VM was shut down. 

2) Increasing scenario, I-scenario for short, described a 

sudden load increment produced by the noisy VM in the 

probing period. 

3) Decreasing scenario, D-scenario for short, 

represented that noisy VM changes its state to “stop” in 

the probing period, which led to a sudden decrease to the 

cache load. 

It took about 0.045s to complete one cache load measuring 

in our experimental setting. Therefore, we performed the 

Prime-Probe measuring one time each second in the 

following experiments. 

B. Training the threshold 

In this section, we aimed to evaluate the feasibility of the 

co-residency detection scheme and trained the threshold. In 
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the experiment, we divided the VMs into four categories. 

They were: (1) malicious VM; (2) victim VM which was 

co-resident with the malicious VM; (3) victim VM which was 

not co-resident with the malicious VM; (4) noisy VMs located 

in the same host with the monitoring VM. Noisy VMs 

changed the cache load scenario during the probing phase. 

RSA-based file encryption and apache2-based web server run 

in victim VM and noisy VM. The victim VM performed the 

co-residency detection scheme. 

 
Fig. 2.  Co-residency probability in S-scenario. 

 
Fig. 3.  Co-residency probability in I-scenario. 

 
Fig. 4.  Co-residency probability in D-scenario. 

To ensure that η could clearly distinguish the case of 

co-residency from not co-residency, in this experiment, we 

assumed that noisy VM only changed its running states during 

the phase of sampling Fcl. And the state change pattern was in 

accordance with the S-scenario, D-scenario and I-scenario. In 

S-scenario, the noisy VM did not change its running state. In 

I-scenario, noisy VM changed its status from “stop” to “run”. 

In D-scenario, noisy VM changed its status from “run” to 

“stop”. 

In this experiment, we performed the co-residency 

detection for 100 times and calculated the co-residency 

probability, when the VMs were co-resident and not 

co-resident respectively. In each detection, encryption 

application and web application were deployed in the victim 

VM and noisy VM. The experimental results were illustrated 

in Fig. 2, Fig. 3 and Fig. 4. In these figures, the co-resident 

probability as a function of α was illustrated in S-scenario, 

I-scenario and D-scenario, respectively. 

From these three figures, we could observe that the 

co-residency probability decreased with the increasing of α, 

regardless of whether the victim VM and malicious VM were 

co-resident. Moreover, in each distinct load scenario, the 

co-residency probability when the VMs were co-resident was 

significantly different from the co-residency probability when 

the VMs were not co-resident, regardless of which application 

was deployed. 

According to the experimental results depicted in the 

figures, assigning α to 0.5, co-resident probabilities in 

different cache load scenarios were always larger than 0.4 

when the VMs were co-resident, while the probabilities were 

always smaller than 0.2 when the VMs were not co-resident. 

So, the co-residency probabilities were significant different 

when the VMs were co-resident and not co-resident, 

regardless of which load scenarios, when α was 0.5. Therefore, 

assigning the value between 0.2 and 0.4 to η, such as 0.3, the 

co-resident detection scheme could detect VMs co-residency 

properly and precisely, without knowing the load scenarios. 

C. Efficacy of co-residency detection scheme 

In Experiment 1), we assumed that the state changes of 

noisy VM only occurred in the stage of sampling Fcl. In this 

section, the efficacy of our proposed co-residency detection 

scheme was evaluated, without the constraints on the state 

changes of noisy VM. Therefore, in this testing, 8 typical state 

changes scenarios of the noisy VM were constructed. 

We used the pattern “state1->state2->state3” to depict the 

process of state changes during the detection, where state1 

referred to the state in the phase of sampling Fcl, state2 

referred to state in the phase of sampling Scl, and state3 

referred to the state in the phase of sampling Lcl. In the 

experiment, a random function r()={0,1} was used to control 

the state changes. If r() returned 0, state of the noisy VM was 

“run”. If r() returned 1, state was “stop”. In this way, the 

random load scenarios were obtained. 

In each scenario, we produced 200 random experiments, 

including 100 experiments when the VMs were co-resident 

and 100 experiments when the VMs were not co-resident. 

Then we counted the true detection rate (tdr), which was 

defined in (16) 

 / *100%.tdr tt at=             (16) 

Where tt referred to the number of successful detections, and 

at referred to the number of total detections. 

In these experiments, we compared our proposed scheme 

with the other two schemes, where the scheme I calculated the 

similarity degree between Fcl and Scl to implement the 

detection [3], and the scheme II calculated the similarity 

degree between Fcl
3
 and Scl

3
, which was the advanced 

version of scheme I. The experimental results were showed in 

77



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013 

Fig. 5. 

As could be seen from Fig. 5, the results presented a higher 

true detection rate using our proposed scheme (VCDS), which 

is about 20% higher than using scheme I and scheme II. We 

considered the reason was twofold. First, load preprocessor 

and load predictor were used to process the raw 

measurements, which could decrease the impact of the noises 

which were introduced by the system and other co-resident 

VMs. This could be verified by the fact that the tdr of scheme 

II was higher than tdr of scheme I. Second, one more cache 

load set defined as Tcl was sampled, which increased the 

information about the cache load changes related to the victim 

VM. This could be verified by the fact that the tdr of scheme 

III was higher than tdr of scheme II as well. 

On the other hand, Fig. 6 presented that the time costs of 

VCDS was larger than scheme I and scheme II, which was 

mainly because of the additional cache load set. 

Ultimately, we can conclude that, although the time cost is 

increased, the efficacy of our proposed detection scheme is 

improved.  

 
Fig. 5.  True detection rate. 

 
Fig. 6.  Computation time. 

V. CONCLUSIONS 

In this paper, we proposed a novel VMs co-residency 

detection scheme via cache-based side channel attacks. 

Considering the interference from other co-resident virtual 

machines, this scheme sampled three cache load sets and used 

the techniques of load preprocessing, load predicting and 

normal cloud model to process the raw measurements, which 

was the first trail in the field of side channel analysis based on 

cache, to the best of our knowledge. The experimental results 

demonstrated that our scheme could improve the true 

detection rate effectively, with the interference of the noisy 

VM which was co-resident with the attack VM. 
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