
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013

Abstract—Virtual machine technology enables the cloud to

offer large scale and flexible computing ability. However, it also

introduces a range of new vulnerabilities. Malicious users can

extract sensitive information from other users covertly via side

channel attacks, which breaks the isolation between the virtual

machines (VMs). In this paper, we investigate such a security

threat and propose the VMs Co-residency Detection Scheme via

cache-based side channel attacks (VCDS) to get the location of

the specified VM. Using load pre-processor based on cubic

spline interpolation, VCDS makes the raw measurements more

smoothing and relevant. With the load predictor based on linear

regression model, VCDS probes cache load changes produced by

the victim VM more accurately. Based on the normal cloud

model, VCDS computes the co-residency probability to describe

VMs co-residency quantitatively. The experimental results show

that VCDS improves the true detection rate even with the

interference of the co-resident noisy VM compared to the

existing schemes.

Index Terms—Cloud computing, virtual machine, side

channel attack, co-residency detection.

I. INTRODUCTION

Cloud computing, an emerging computing and service

paradigm, in which the core computing and software

capabilities are outsourced on demand, offers the prospect of

lower costs, lighter administrative burdens and more

convenient user experiences. However, it also introduces new

security challenges, such as data privacy [1] and VM (Virtual

Machine) security [2], which severely hinder the development

of the cloud computing.

Based on the logical isolation between VMs, access control

mechanisms are proposed to guarantee security of the cloud.

However, information leak persists. It is mainly introduced by

the vulnerabilities caused by the sharing of hardware

Manuscript received September 09, 2012; accepted February 23, 2013.

This research was supported in part by NSFC under Grant 60873071,

61172090 and 61103231, National Science and Technology Major Project

under Grant 2012ZX03002001-004, Scientific and Technological Project in

Shaanxi Province under Grant 2012K06-30, Natural Science Basic Research

Plan in Shaanxi Province of China under Grant 2011JM8012, Ph.D.

Programs Foundation of Ministry of Education of China under grant

20120201110013.

resources, e.g. CPU cache, main memory, network traffic, etc.,

which lead to side channel attacks [3]. Malicious users can

extract private information from other co-resident VMs

covertly by analyzing the responses of sharing resources, such

as computing time, power consumption, etc.

The focus of this paper is to reveal the threats introduced by

cache-based side channel attacks in the cloud. VMs

co-residency detection via side channel attacks aims to get the

location of the victim VM by analyzing the responses of the

shared cache. The attack is harmful to both the service

providers and common users of cloud computing. To the

service providers, adversary can undermine the

location-dependent features of the cloud, due to the leakage of

location. For example, how many VMs exist in the cloud and

where the VMs are applied, etc. To the common users,

disclosure of VMs location means that the isolation between

VMs is broken. Therefore, on the one hand, adversary may

launch more specific side channel attacks to steal private

information. On the other hand, victim VMs are more likely to

suffer from the intrusion attacks, such as DDOS.

Side channel attacks in cloud have been investigated

recently [4], [5]. However, to the best of our knowledge, they

are still limited in the following two aspects. First, they pay

less attention to the interferences introduced by the VMs

which reside in the same host with the malicious VM, which

has impact on the success rate of cache-based side channel

attacks. Second, the noises introduced by the hardware

features and software features, such as TLB (Translation

Lookaside Buffers) misses, hardware prefetching, VMM

(Virtual Machine Monitor) scheduling, etc., are ignored by

the existing work as well, which make the raw measurements

are extremely variable.

To overcome these limitations, a novel VMs Co-residency

detection scheme via cache-based side channel attacks

(VCDS) is presented. In VCDS, load preprocessor based on

cubic spline interpolation and load predictor based on linear

regression are proposed to process the raw measurements;

co-residency probability computing algorithm is designed to

calculate the probability of VMs co-residency; detection rules

are put forward to determine the results. The experimental

Detecting VMs Co-residency in the Cloud:

Using Cache-based Side Channel Attacks

Yu Si
1,2

, Gui Xiaolin
1,2

, Lin Jiancai
1,2

, Zhang Xuejun
1,3

, Wang Junfei
1,2

1
Department of Computer Science and Technology, Xi’an Jiaotong University,

Xi’an 710049, P.R.China
2
The Key Laboratory of Computer Network, Xi’an Jiaotong University,

Xi’an 710049, P.R.China
3
School of Electronic and Information Engineering, Lanzhou JiaoTong University,

Lanzhou 730070, P.R.China

yusi.xjtu@gmail.com

http://dx.doi.org/10.5755/j01.eee.19.5.2422

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013

results show that our proposed scheme is feasible and

effective.

II. CACHE-BASED SIDE CHANNEL ATTACKS IN CLOUD

In the multi-core CPU architecture, data cache, used to

improve the computing speed, is shared by different cores. So,

data cache is shared by the VMs residing in the same physical

machine (same with host in the following). Moreover,

administrator privilege is not needed to change cache load.

Therefore, data cache can be used to construct a side channel.

Before detailing the cache-based side channel attacks in the

cloud, we divide VMs into three roles in the attack scenario.

They are malicious VM, victim VM and noisy VM,

respectively. Malicious VM belongs to the attacker, which

probes and analyzes cache activities. Victim VM is the attack

target. Noisy VM resides in the same host with the malicious

VM, which interferes with the attack.

Commonly, cache-based side channel attacks consist of two

major steps: (1) measuring the cache load and (2) analyzing

the cache load to extract the private information.

The key issue of the first step is to exploit the timing

differences in access latencies between cache and main

memory. The load measurement generation method is the

Prime-Probe [4] including the following steps:

1) Prime: Malicious VM allocates a contiguous buffer of

b bytes and fills the entire cache by reading the buffer at

s-byte offsets. Here, b should be larger than cache size; s is

the cache line size;

2) Wait: Malicious VM waits for a pre-specified time

interval. In this interval, cache is used by other co-resident

VMs, hopefully in favor of the victim VM;

3) Probe: Malicious VM reads the buffer at s-bytes

offsets again and measures the time.

When reading the buffer, pointer-chasing technique [6], [7]

is used to mitigate the affections of hiding of access latencies

incurred by hardware pre-fetcher.

The time of the final step’s read is the load measurement,

measured in number of CPU cycles. The load measurement

will be strongly correlated with the use of cache during the

Wait step, since that usage of cache evicts some portion of the

buffer and thereby drives up the read time during the Probe

phase.

If there is much cache activity from victim VM during the

probing interval, malicious VM’s data is likely to be evicted

from the cache and replaced with data accessed by victim VM,

which results in a noticeably higher timing measurement.

Therefore, high timing measurement implies that cache is

heavy load and victim VM is busy; while the low one implies

that cache is light load and victim VM is idle.

In this paper, we assume that victim VM provides public

services, such that any user can access the services. We

believe that such an assumption is feasible, since the

malicious users are always interested in the public service

providers. Therefore, malicious VM can burden victim VM’s

computational load by accessing the public services. After the

computation produced by accessing the service, cache load

will decrease. Malicious user can get three cache load

measurements sets which are sampled before, during and after

accessing the victim VM’s service, respectively. Ultimately,

malicious user can get the private information by analyzing

differences of the three load sets. Consequently, side channel

attacks in cloud computing can be converted to the matter of

computing the similarity of cache load sets.

III. VMS CO-RESIDENCY DETECTION SCHEME

In this section, VCDS is detailed, which takes as its input

three cache load measurements sets. The first set is obtained

before accessing the services of victim VM, marked as First

cache load set, short for Fcl=(fcl1,fcl2,…, fcln). The second set

is probed when victim VM is doing the computation produced

by accessing the service, marked as Second cache load set,

short for Scl=(scl1, scl2,…,scln). The third set is probed after

the end of the service computation, marked as Third cache

load set, short for Tcl=(tcl1, tcl2, …, tcln).

input

Fcl

Scl

Tcl

raw measurement processing

Load Preprocessor

distinguisher

Co-residency probability

detection rules

output

Co-residency

?
Load Predictor

Fig. 1. Illustrated process of co-residency detection scheme.

VCDS consists of two major modules which are raw

measurement processing and distinguisher. The processes are

illustrated in Fig. 1. The major steps include:

Step 1. Load preprocessor takes as its inputs Fcl, Scl and

Tcl, and returns Fcl
1
, Scl

1
 and Tcl

1
 which respectively

represent the load trend of Fcl, Scl and Tcl.

Step 2. Load predictor takes as its inputs Fcl
1
 and Scl

1

respectively, and returns Fcl
2

and 2
1Scl , which are the

estimated caches load in the near future for Fcl
1
 and Scl

1
.

Meanwhile, choosing specified elements from Scl
1
 and Tcl

1

to construct 2
2Scl and Tcl

2
, where the timestamps of 2

2Scl

and Tcl
2

are respectively same with the timestamps of Fcl
2

and 2

1
Scl .

Step 3. Obtain 3Fcl , 3
1Scl , 3

2Scl and 3Tcl according to

2Fcl , 2
1Scl , 2

2Scl and 2Tcl , based on the normal cloud model

[8]. Fcl
3
 includes twofold information of the load value and its

membership degree. And the same to 3
1Scl , 3

2Scl and Tcl
3
.

Step 4. Distinguisher takes as its inputs Fcl
3
, 3

1Scl ,

3
2Scl and Tcl

3
, and returns the result based on the

co-residency probability computing algorithm and the

detection rules.

A. Load pre-processor based on cubic spline interpolation

Load preprocessor is used to filter out the noises and yield a

more regular view about the load trend. The necessity of load

preprocessor is twofold. First, the raw measurements, which

are variable due to the noises existing in the system, should

get smoothing. Second, the correlation between the raw

measurements should be strengthened, which leads to a more

accurate prediction value.

Cubic Spline Interpolation (CSI) is considered to be a

representative example of a non-linear numerical data

analysis tool. Lower-order curves (with a degree less than 3)

do not react quickly to load changes, while high-order curves

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013

(with a degree higher than 3) are considered unnecessary

complex, introduce undesired wiggles and are

computationally too expensive.

For the definition of the cubic spline interpolation, some

control points (tj, clj) in the set of measured cache load should

be chose firstly, where tj is the time of measurement of clj. A

cubic spline interpolation function CS
J
(t), based on J control

points, is a set of J-1 piecewise third-order polynomials pj(t),

where j∈[1, J-1], with the following form

1 1 2

2 2 3

1 1

(), ,

(), ,
()

...

(), ,

J

J J J

p cl cl cl cl

p cl cl cl cl
CS cl

p cl cl cl cl− −

≤ <
 ≤ <

= 

 ≤ <

 (1)

where pi (i=1,2,…,J-1) is a third-order polynomial defined in

(2)

 3 2() () () ()i i i i i i i ip cl a cl cl b cl cl c cl cl d= − + − + − + (2)

and CS
J
(t) should satisfy the following two properties.

Property 1. The piecewise third-order polynomials CS
J
(t)

will interpolate all data points.

Property 2. CS
J
(t), CS

J’
(t) and CS

J’’
(t) will be continuous on

the interval [cli, cln].

If we apply both properties, we can obtain the solution of ai,

bi, ci and di as the following from:

1

1 1

() / 6 ,

/ 2,

() / (2) / 6 ,

,

i i i

i i

i i i i i

i i

a x x h

b x

c cl cl h x x h

d cl

+

+ +

= −
 =


= − − +
 =

 (3)

where h=li-li-1, and xi can be got via the matrix equation:

1

1 2 32

2 3 43

3 4 54

2

3 4 3 2

2 3

1

21 4 1 0 0 0 0 0

20 1 4 1 0 0 0 0

20 0 1 4 0 0 0 0
6

0 0 0 0 4 1 0 0 2

0 0 0 0 1 4 1 0 2

0 0 0 0 0 1 4 1

J J J J

J J

J

J

x

cl cl clx

cl cl clx

cl cl clx

h
x cl cl cl

x cl cl

x

x

− − − −

− −

−

 
  − +   

    − +   
  − + 
    =   
    − +
   

−   
       

 

…

…

…

⋮ ⋱ ⋮ ⋮ ⋮

⋯

⋯

⋯

2 1

2 1

.

2

J J

J J J

cl

cl cl cl

− −

− −

 
 
 
 
 
 
 
 
 +
 

− + 

(4)

Note that this system has J-2 rows and J columns, and is

therefore under-determined. With the natural splines which

defines that x1=xJ=0, we can obtain the deterministic solution

of the matrix equation eventually.

The CSI-based load preprocessor returns a new value after

n cache load measures. Moreover, the cubic spline has the

advantage of being reactive to load changes and independent

of cache load metrics and workload characteristic.

Ultimately, the set consisting of cache load trend values is

obtained, which is defined as L= (l1,l2,…,lk), whose

corresponding timestamp set is T=(t1,t2, …,tk).

B. Load predictors based on linear regression

Load predictor is used to estimate the cache load in the near

future, which plays a significant role in our proposed scheme.

Through rendering the predictor, the detection scheme

responds to the sudden changes of the system running state

more effectively. The key issue is to improve the prediction

accuracy.

To improve the accuracy of load prediction, the correlation

between raw measurements should be strengthened. Existing

work [7] shows that the correlation coefficient will get larger

after the process of CSI-based preprocessor. Therefore, the

load predictor defined in the paper takes as its input a set of

load trend values L(ti) and returns a load trend value at time

ti+w. Therefore, a predicted load value set � 1 2(, ,...,)vL l l l= ɶ ɶ ɶ

will be obtained, where v is the number of predicted values.

In this section, we consider the load predictor as a linear

system, so that the predictor LPw(L(ti)) based on the linear

regression is used. The predictor is characterized by a couple

of parameters: the prediction window w, which represents the

size of prediction interval, and the past time window q, which

is the size of load trend value set. Then the first trend value li-q

and the last li are considered. LPw(L(ti)) is the line that

intersects the two points (li-q, ti-q) and (li, ti), and returns i wl +
ɶ

that is the predicted value at time ti+w

 (()) ,w i i wLP L t tγ λ+= + (5)

where () /γ −= −i i ql l q , and λ γ− −= −i q i ql t .

C. Determination of co-residency probability

In the ideal case, detection result is a definite concept

which has only two values: yes and no. However, in the real

environments, the detection result is fuzzy because of the

influence of various factors. Therefore, in this section, based

on the similarity degree of normal cloud model, we put

forward co-residency probability to quantitatively

characterize the possibility of co-residency. The similarity

degree refers to the distance between two normal cloud

models. The closer distance between the two normal cloud

models, the larger membership degree of the cross points will

be obtained. Therefore, we take the membership degree to

quantify the similarity degree.

Definition 1. Similarity degree (µsim) between normal cloud

model C
1
 and C

2
 is the maximum membership degree of the

crossing points of the two normal cloud models, whose

definition domain is [0, 1].

According to the 3En principle, the crossing points should

fall in the interval [Ex1-3En1, Ex1+3En1] or [Ex2-3En2,

Ex2+3En2]. Ex1 and En1 refers to the expectation and entropy

of C
1
, and Ex2 and En2 refers to the expectation and entropy of

C
2
. In the following two cases, the similarity degree is defined

to be 0. (1) Both of the two crossing points are not in the

intervals. (2) There are no crossing points between C
1
 and C

2
.

Definition 2. Co-residency probability (µ) is defined as

µ=1-µsim, which decreases with the increase of similarity

degree and is used to quantify the possibility that malicious

VM and victim VM are co-resident.

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013

The co-residency probability computing algorithm consists

of the following steps:

Step 1. Use (6)-(8) to compute the estimated value of key

parameters of normal cloud model [8], which are Ex, En and

He respectively. Ex refers to the mathematical expectation of

the cloud model. En refers to entropy of the cloud model,

representing the uncertainty measurement of a qualitative

concept. He refers to the hyper-entropy of cloud model,

representing the uncertain degree of entropy:

1

1
,i

i v

Ex l
v ≤ ≤

= ∑ (6)

 �

1

1
x ,

2
i

i v

En l E
n

π

≤ ≤
= −∑ (7)

� �2 2

1

1
() .

1
i

i v

He l Ex En
v ≤ ≤

= − −
−

∑ (8)

Step 2. Use forward normal cloud generator algorithm to

obtain both C
1
 and C

2
based on these estimators. Limited to

the length of paper, we will not deepen further the algorithm

here. Readers who are interested can read [8].

Step 3. Compute two crossing points: cp1 and cp2:

2 1 1 2
1

1 2

1 2 2 1
2

1 2

,

.

Ex En Ex En
cp

En En

Ex En Ex En
cp

En En

−
= −


+ =

 +

 (9)

Step 4. Compute the membership degree of cp1 and cp2

respectively

2

2

()

2(*)() .

x Ex

En
C x e αµ

−
−

= (10)

Compared to the classical definition of membership degree

function, we introduce a new ingredient in (10), which is

denoted as α and makes the similarity computing dynamically

adapts to different systems built on different hardware

platforms.

Step 5. Compute the similarity degree µsim of by computing

the higher value of 1 1
()µ

C
cp and 1 2

()µ
C

cp , which is

defined in (11)

 1 11 2
((), ()).sim C C

Max cp cpµ µ µ= (11)

Step 6. Compute the co-residency probability which is

defined as 1µ µ= − sim .

D. Determination Rule

As stated above, there are significant differences between

the cache load changes when the VMs are co-resident and are

not co-resident. Therefore, the threshold value (η) of

co-residency probability can be used to classify the

co-residency probability.

In this paper, we get three cache load sets, corresponding to

three different stages during the process of accessing to the

victim VM’s services. We calculate ρ1 and ρ2 to depict the

cache load changes produced by the victim VM. In the ideal

case, if the malicious VM is co-resident with the victim

VM, both of the two co-residency probabilities should be

larger than η. Moreover, the expectation of the second load set

should not be smaller than the expectation of the first and third

set. Therefore, we illustrate the determination conditions as

follows:

 1 ,ρ η≥ (12)

 2ρ η≥
, (13)

 3 3
2

,
Fcl Scl

Ex Ex≥ (14)

 3 3
1Scl Tcl

Ex Ex≥ . (15)

Finally, we conclude the determination rule: if all the four

conditions are satisfied simultaneously, the victim VM is

co-resident with the malicious VM; otherwise, they are not

co-resident.

IV. EXPERIMENTS

The overall evaluation of the proposed scheme comprised

of (1) experiments to verify the feasibility of our co-residency

detection scheme in a virtualized computing environment and

(2) experiments to compare our proposed scheme with the

existing method to evaluate the efficacy.

All the experimental data were collected from our cloud

computing platform based on KVM, which consists of 30

physical servers. The hardware configurations for each server

are: Intel Xeon 2.13GHz CPU, 8GB main memory and

500GB hard disk. Ubuntu Linux was run in each VM. 2

VCPU, 512MB main memory and 8 GB hard disk were

allocated to each VM. There were two kinds of applications

running in the VMs. They were web server based on apache2

and file encryption based on RSA, which were web-intensive

and computation-intensive applications. When the web server

was deployed, JMeter was used to simulate multi-users to

access the web site.

In this section, we considered three different cache load

scenarios.

1) Steady scenario, S-scenario for short, described the

situation that the running state of noisy VM was not

changed, where the running state included “run” and

“stop”. “Run” referred that VM was launched and “stop”

referred that VM was shut down.

2) Increasing scenario, I-scenario for short, described a

sudden load increment produced by the noisy VM in the

probing period.

3) Decreasing scenario, D-scenario for short,

represented that noisy VM changes its state to “stop” in

the probing period, which led to a sudden decrease to the

cache load.

It took about 0.045s to complete one cache load measuring

in our experimental setting. Therefore, we performed the

Prime-Probe measuring one time each second in the

following experiments.

B. Training the threshold

In this section, we aimed to evaluate the feasibility of the

co-residency detection scheme and trained the threshold. In

76

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013

the experiment, we divided the VMs into four categories.

They were: (1) malicious VM; (2) victim VM which was

co-resident with the malicious VM; (3) victim VM which was

not co-resident with the malicious VM; (4) noisy VMs located

in the same host with the monitoring VM. Noisy VMs

changed the cache load scenario during the probing phase.

RSA-based file encryption and apache2-based web server run

in victim VM and noisy VM. The victim VM performed the

co-residency detection scheme.

Fig. 2. Co-residency probability in S-scenario.

Fig. 3. Co-residency probability in I-scenario.

Fig. 4. Co-residency probability in D-scenario.

To ensure that η could clearly distinguish the case of

co-residency from not co-residency, in this experiment, we

assumed that noisy VM only changed its running states during

the phase of sampling Fcl. And the state change pattern was in

accordance with the S-scenario, D-scenario and I-scenario. In

S-scenario, the noisy VM did not change its running state. In

I-scenario, noisy VM changed its status from “stop” to “run”.

In D-scenario, noisy VM changed its status from “run” to

“stop”.

In this experiment, we performed the co-residency

detection for 100 times and calculated the co-residency

probability, when the VMs were co-resident and not

co-resident respectively. In each detection, encryption

application and web application were deployed in the victim

VM and noisy VM. The experimental results were illustrated

in Fig. 2, Fig. 3 and Fig. 4. In these figures, the co-resident

probability as a function of α was illustrated in S-scenario,

I-scenario and D-scenario, respectively.

From these three figures, we could observe that the

co-residency probability decreased with the increasing of α,

regardless of whether the victim VM and malicious VM were

co-resident. Moreover, in each distinct load scenario, the

co-residency probability when the VMs were co-resident was

significantly different from the co-residency probability when

the VMs were not co-resident, regardless of which application

was deployed.

According to the experimental results depicted in the

figures, assigning α to 0.5, co-resident probabilities in

different cache load scenarios were always larger than 0.4

when the VMs were co-resident, while the probabilities were

always smaller than 0.2 when the VMs were not co-resident.

So, the co-residency probabilities were significant different

when the VMs were co-resident and not co-resident,

regardless of which load scenarios, when α was 0.5. Therefore,

assigning the value between 0.2 and 0.4 to η, such as 0.3, the

co-resident detection scheme could detect VMs co-residency

properly and precisely, without knowing the load scenarios.

C. Efficacy of co-residency detection scheme

In Experiment 1), we assumed that the state changes of

noisy VM only occurred in the stage of sampling Fcl. In this

section, the efficacy of our proposed co-residency detection

scheme was evaluated, without the constraints on the state

changes of noisy VM. Therefore, in this testing, 8 typical state

changes scenarios of the noisy VM were constructed.

We used the pattern “state1->state2->state3” to depict the

process of state changes during the detection, where state1

referred to the state in the phase of sampling Fcl, state2

referred to state in the phase of sampling Scl, and state3

referred to the state in the phase of sampling Lcl. In the

experiment, a random function r()={0,1} was used to control

the state changes. If r() returned 0, state of the noisy VM was

“run”. If r() returned 1, state was “stop”. In this way, the

random load scenarios were obtained.

In each scenario, we produced 200 random experiments,

including 100 experiments when the VMs were co-resident

and 100 experiments when the VMs were not co-resident.

Then we counted the true detection rate (tdr), which was

defined in (16)

 / *100%.tdr tt at= (16)

Where tt referred to the number of successful detections, and

at referred to the number of total detections.

In these experiments, we compared our proposed scheme

with the other two schemes, where the scheme I calculated the

similarity degree between Fcl and Scl to implement the

detection [3], and the scheme II calculated the similarity

degree between Fcl
3
 and Scl

3
, which was the advanced

version of scheme I. The experimental results were showed in

77

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 5, 2013

Fig. 5.

As could be seen from Fig. 5, the results presented a higher

true detection rate using our proposed scheme (VCDS), which

is about 20% higher than using scheme I and scheme II. We

considered the reason was twofold. First, load preprocessor

and load predictor were used to process the raw

measurements, which could decrease the impact of the noises

which were introduced by the system and other co-resident

VMs. This could be verified by the fact that the tdr of scheme

II was higher than tdr of scheme I. Second, one more cache

load set defined as Tcl was sampled, which increased the

information about the cache load changes related to the victim

VM. This could be verified by the fact that the tdr of scheme

III was higher than tdr of scheme II as well.

On the other hand, Fig. 6 presented that the time costs of

VCDS was larger than scheme I and scheme II, which was

mainly because of the additional cache load set.

Ultimately, we can conclude that, although the time cost is

increased, the efficacy of our proposed detection scheme is

improved.

Fig. 5. True detection rate.

Fig. 6. Computation time.

V. CONCLUSIONS

In this paper, we proposed a novel VMs co-residency

detection scheme via cache-based side channel attacks.

Considering the interference from other co-resident virtual

machines, this scheme sampled three cache load sets and used

the techniques of load preprocessing, load predicting and

normal cloud model to process the raw measurements, which

was the first trail in the field of side channel analysis based on

cache, to the best of our knowledge. The experimental results

demonstrated that our scheme could improve the true

detection rate effectively, with the interference of the noisy

VM which was co-resident with the attack VM.

REFERENCES

[1] R. W. Huang, X. L. Gui, S. Yu, W. Zhuang, “Study of

Privacy-Preserving Framework for Cloud Storage”, Computer Science

and Information Systems, vol. 8, no. 3, pp. 801–819, 2011. [Online].

Available: http://dx.doi.org/10.2298/CSIS100327029R

[2] H. Jin, G. F. Xiang, D. Q. Zou, S. Wu, F. Zhao, M. Li, W. D. Zheng, “A

VMM-based intrusion prevention system in cloud computing

environment”, Journal of Supercomputing, to be published.

[3] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,

RSA, DSS, and other systems”, in Proc. of the 16th Annual

International Cryptology Conference, Berlin, 1996, pp. 104–113.

[4] T. Ristenpart T, T. Eran, S. Hovav, S. Stefan, “Hey, you, get off of my

cloud: exploring information leakage in third-party compute clouds”,

in Proc. of the 6th ACM Conference on Computer and

Communications Security, New York, 2009, pp. 199–212.

[5] Y. Zhang, J. Ari, O. Alina, and K.P Michael, “Home Alone:

Co-residency detection in the cloud via side-channel analysis”, in Proc.

of the 2011 IEEE Symposium on Security and Privacy, New York,

2011, pp. 313–328. [Online]. Available: http://dx.doi.org/10.1109/

SP.2011.31

[6] E. Tromer, D. A. Osvik, A. Shamir, “Efficient cache attacks on AES,

and countermeasure”, Journal of Cryptology, vol. 23, no. 1, pp. 37–71,

2010. [Online]. Available: http://dx.doi.org/10.1007/s00145

-009-9049-y

[7] M. Andreolini, S. Casolari, “Load prediction models in web-based

systems”, in Proc. 1st International Conference on Performance

Evaluation Methodologies and Tools. New York, 2006, pp. 27–36.

[8] D. Y. Li, C. Y. Liu, W. Y. Gan, “A new cognitive model: cloud model”,

International Journal of Intelligent Systems, vol. 24, no. 3, pp.

357–375, 2009. [Online]. Available: http://dx.doi.org/

10.1002/int.20340

78

