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1Abstract—The analysis of non-stationary signals commonly 

includes the signal segmentation process, dividing such signals 

into smaller time series, which are considered stationary and 

thus easier to process. Most commonly, the methods for signal 

segmentation utilize complex filtering, transformation and 

feature extraction techniques together with various kinds of 

classifiers, which especially in the field of biomedical signals, 

do not perform very well and are generally prone to poor 

performance when dealing with signals obtained in highly 

variable environments. In order to address these problems, we 

designed a new method for the segmentation of heart sound 

signals using deep convolutional neural networks, which works 

in a straightforward automatic manner and does not require 

any complex pre-processing. The proposed method was tested 

on a set of heartbeat sound clips, collected by non-experts with 

mobile devices in highly variable environments with excessive 

background noise. The obtained results show that the proposed 

method outperforms other methods, which are taking 

advantage of using domain knowledge for the analysis of the 

signals. Based on the encouraging experimental results, we 

believe that the proposed method can be considered as a solid 

basis for the further development of the automatic 

segmentation of highly variable signals using deep neural 

networks. 

 
 Index Terms—Artificial neural networks; Machine 

learning; Segmentation. 

I. INTRODUCTION 

Generally speaking, signals can be divided into two main 

categories: deterministic signals and random or statistical 

signals. Based on the behavior, statistical signals are divided 

into a group of stationary signals, which statistical 

characteristics do not change over time, and into a group of 

non-stationary signals, which may have variable quantities 

in time, such as mean value, dispersion or frequency 

spectrum [1]. Based on their properties, stationary signals 

are easier to process than non-stationary signals. When 

dealing with non-stationary signals, it is common to divide 

such signals into smaller time series, making those time 

series considered as stationary signals. The described 

process is known as segmentation [2]. 

Signal segmentation is considered to be one of the 

fundamental problems of digital signal processing in various 
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information, monitoring, prediction and control systems in a 

wide range of fields [3]. In general, signal segmentation 

could be performed in two different ways, namely constant 

segmentation and adaptive segmentation. Constant 

segmentation is quite simple, as it basically divides the 

signal into fixed length segments, but generally provides an 

extremely weak performance. With such a straightforward 

approach, it is only by chance that the segment boundaries 

will fall at the points of change of the signal; therefore, even 

considering the fixed length segments may annul the 

purpose of segmentation itself. On the other hand, adaptive 

segmentation is more complex, usually delivers higher 

performance, and most importantly detects signal 

boundaries automatically, depending on the statistical 

characteristics of the signal [4]. 

There are various segmentation methods presented in the 

literature [5]–[7] applied in a wide range of domains, from 

music [8], and seismology [9], to astrology [10], and 

medicine [1]–[3]. Most commonly these methods utilize 

more or less complex conventional techniques like wavelet 

transformation [4], and frequency analysis [11], etc. to 

extract features from the signal and perform some kind of 

classification over them like is presented in [12]–[14]. In 

recent work, the authors have also presented various kinds 

of hybrid methods tackling the signal segmentation tasks, 

including the heart sound signal segmentation tasks [15]. 

Such hybrid methods are most commonly composed of 

artificial neural networks, specifically developed for time 

series processing, and some kind of classifier like Random 

Forest, Support Vector Machine, feed-forward neural 

network, convolutional neural network, etc. 

However, these approaches, especially in the field of 

medicine, have not performed very well, due to the inter-

patient variations of biomedical signals, leading to the 

inconsistent performance of such methods when, for 

instance, one is classifying a new subject’s biomedical 

signals [16]. In recent years, the authors [17], [18] have 

started addressing the problem with the use of feature 

extraction capabilities of various types of deep neural 

networks and also for classification tasks. Not only have 

such approaches demonstrated significant performance 

improvements over conventional methods, but they are also 

less computationally demanding as more conventional 

methods. The extraction of several features using the 
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conventional methods, especially in the transform domains 

along with the post-processing methods, may significantly 

increase the computational complexity of the overall 

process, which can reduce the possibility of their use in 

lightweight applications such as wearable heart monitoring 

devices, smart watches, etc. [19]. 

We are witnessing a massive increase in various tracking 

activity devices and mobile activity applications as well as 

various wearable health monitoring devices that would 

benefit significantly from general, widely applicable, robust 

and straightforward segmentation methods. In general, the 

majority of existing methods were developed and tested on 

datasets obtained by experts under highly controlled 

conditions and are prone to mistakes in the presence of noise 

in the signal [20]. Encouraged by the results of utilizing 

convolutional neural networks (CNNs) for the purpose of 

extracting features from EEG signals to classify neural 

disorders in our previous work [21], in this paper, we are 

proposing a new method for the automatic segmentation of 

heart sound signals collected in highly variable conditions 

using deep CNNs. 

As such, in contrast to the majority of existing methods, 

the proposed method does not require any expert 

intervention in the sense of using domain knowledge to 

guide the classification process. The main goal of our 

research is to study whether the proposed method can 

extract important features from signals captured in highly 

variable environments and also successfully detects the 

heartbeats from it with a level of performance that is at least 

comparable to other methods utilizing deep neural networks. 

The main advantage of the proposed method is its direct use 

of sound signals without any complex feature extraction 

processes or pre-processing, nor does it require any 

additional domain expert knowledge and it is designed to 

work in a straightforward, automatic manner. 

The rest of the paper is structured as follows. In 

Section II, the proposed method is presented in depth. 

Section III presents experimental settings, while Section IV 

presents the results of the conducted experiment. Lastly, 

Section V concludes the paper with our final thoughts and 

some future work possibilities. 

II. PROPOSED METHOD 

The proposed method for signal segmentation utilizing 

deep CNNs, consists primarily of three phases. The first 

phase includes the processing of the recorded sound signal. 

In the second phase, the training of CNN for the task of 

identifying the signal anomalies (in our case heartbeats) is 

performed and in the last phase or post-processing, the 

labeling of detected anomalies (heartbeats) is performed. 

Each of these phases is elaborated upon in the following 

sections. 

A. Signal Processing 

At the input, our method receives raw heartbeat activity 

recordings in the form of raw stereo sound signals with a 

sampling rate of 44,100 Hz. The obtained signal data is 

element-wise standardized using the well-known 

standardization method z-score normalization, presented in 

(1) where iz  denotes the calculated standardized value for 

the element ix  from a group of elements x , while mean( )x  

and std( )x  represents the statistical average value and the 

standard deviation of elements in group x  respectively 

 
mean( )

.
std( )

i
i

x x
z

x


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Standardization is quite a common procedure in the pre-

processing phase in the field of machine learning [22]. In 

our case, it also enables us to transform the signal data to a 

more uniform scale, because the heartbeat signal recordings 

were obtained in various uncontrolled environments with 

different scale ranges. Different scale ranges could, in the 

phase of training the CNN, cause difficulties and result in a 

poor performance of the CNN model. The outcome of 

applying the standardization method to raw signals is shown 

in Fig. 1. 

 
                                      (a)                                                   (b) 

 
                                      (c)                                                   (d) 

Fig. 1.  Sound signal images before and after applied standardization: (a) 

and (c) represent the splits of two different sound clips in a raw form, while 

(b) and (d) represent the same sound clips after standardization. 

After the standardization of the raw signal data, each 

signal recording is divided into multiple frames using the 

sliding window algorithm. For a window size, we chose 

6,615 samples which translates to a length equal to 150 ms 

and step size set as one-third of the window – 2,205 samples 

or 50 ms. In the case of the last frame being shorter than the 

chosen windows size, the frame is at the end padded to the 

same length with zero (0.0) values. The basis for selecting 

the windows size are the ANSI/AAMI EC38 [23] and EC57 

[24] standards which state that the estimated location of the 

heartbeat is deemed to be accurate if it is no further than 

150 ms from the corresponding annotated (real) location of a 

heartbeat. This gives us a time window in total of 300 ms 

(150 ms before and after annotated location) inside which 

any detected heartbeat is deemed accurate. Based on this, 

the mentioned time windows of 300 ms is equal to the size 

of our two frames. The step size, one-third of the window 

size, is chosen because this way each data point in any 

frame (except the first two frames) is captured in three 

windows, which increases the possibility of detecting the 

potential heartbeat correctly.  

B. Convolutional Neural Network 

The CNNs were firstly developed and presented in 
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Fukushima’s paper [25] in the 1980s. The proposed deep 

learning approach, known as neocognitron, was based on 

hierarchical layers trained with the use of the stochastic 

gradient descent algorithm. The real breakthrough in the 

field of machine learning happened later in 1998 with the 

proposal of LeCun’s LeNet5 [26] architecture, which is one 

of the very first CNNs and is considered to be a factor that 

propelled the field of deep learning. Currently, the CNNs are 

generally known to have a great ability to extract features 

from various kinds of signals (e.g., image, video, etc.) while 

achieving near-human performance [27], [28]. 

The deep CNNs were initially developed as feed-forward 

and 2D constrained neural networks with alternating 

convolutional and subsampling layers fully connected at the 

end. They combine three architectural ideas: local receptive 

fields, shared weights and spatial and temporal subsampling. 

The CNN ensures some degree of shift and distortion 

invariance [26]. A convolutional layer can be considered as 

a fuzzy filter, which enhances the features of the original 

signal and reduces the noises. Basically, it models the cells 

in the human visual cortex [29]. A convolutional layer is 

most commonly composed of several feature maps, which 

are calculated with different weight vectors, enabling us to 

extract multiple features from each location. The 

convolution operation is performed between feature maps of 

the previous layer and convolution kernel of the current 

layer in addition with the activation function, which gives 

the results of convolution calculations. The formal 

characterization of the output of the convolutional layer is 

presented in (2) where 
l
jX  stands for the characteristic 

vector corresponding to the j-th convolution kernel of the 

l-th layer and M  is the receptive field of the current neuron. 

l
ijW  indicates the weight and the 

l
jb  denotes the bias 

coefficient appropriated to the j-th convolution kernel of the 

l-th layer while f  is a nonlinear function such as ReLU 

[30], Softmax [31], etc., 

 1( ).
j

l l l l
j j ij ji MX f X W b

    (2) 

A subsampling layer reduces the dimension of feature 

maps while preserving the important extracted features, 

performing local averaging and subsampling. A 

subsampling is possible because the real locations of the 

extracted features are not important as long as their 

approximate positions relative to others remain the same. 

While the initial CNNs were not intended to work with 

one-dimensional signals, we had to make small adjustments 

to the architecture of our CNN to ingest a one-dimensional 

signal. Generally, the one-dimensional convolutional layers 

can be regarded as conventional two-dimensional layers, 

with the exception of the second dimension of layers being 

equal to one. In this manner, the feature maps are calculated 

utilizing the convolution operation on the subsection of the 

previous layer with the sliding kernel only in one direction. 

For the purpose of detecting the heartbeat in the sound 

signal, we designed a simple, straightforward CNN 

architecture presented in Fig. 2. The architecture consists of 

two one-dimensional convolutional layers, each followed by 

a one-dimensional subsampling layer applying the 

maximization function and at the end one fully connected 

layer with an output layer.  

In the first convolutional layer, 20 convolution kernels 

with a length of 661 sampling points are distributed over the 

input audio signal with 6,615 sampling points. The output, 

calculated using a ReLU activation function of the first 

convolutional layer, is then connected to the neurons in the 

first subsampling layer with a pool size of 20 and stride of 

10 samples, producing 20 feature maps with a length of 659, 

which are connected to the second convolutional layer. In 

the second convolutional layer, 50 kernels with a length of 

440 are distributed over the input, producing the output 

calculated with the same activation function as in the first 

convolutional layer. There follows the second subsampling 

layer with the same kernel size and stride as the first one, 

producing 50 feature maps with a length of 64, which are 

fully connected to the layer with a length of 3,200 sampling 

points. Finally, the output layer, with Sigmoid activation 

function, is applied, which classifies the extracted features 

of the fed input audio signal as heartbeat (as 1) or as no 

heartbeat (as 0). 

 
Fig. 2.  The architecture of the proposed CNN method. 

C. Post-processing 

The post-processing phase is a procedure in which we 

determine the locations (samples) in the heartbeat sound clip 

in which the heartbeats occurred. From the splits of the 

original sound clips, using the proposed CNN model, we 

obtain probabilities and predicted classes for each split. In 

order to determine the exact location of a heartbeat, we 

propose a three-step procedure. In the first step, each 

occurrence or series of occurrences of predicted class 

1 among the obtained predictions is transformed into a 

“candidate” ranges of splits. After the construction of the so-

called candidate ranges, the selection of the single split 

(from each candidate range) is performed in the second step. 

The selection is based on the obtained probability for each 

split, in our case, the split with the highest probability is 
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selected, forming a group of candidate splits ( CS ). Having 

selected one split from each candidate range, in the third 

step, the selection of a sample from each candidate split was 

done following (3), where TS  denotes the calculated 

location of a heartbeat, i represents the single selected split 

from the group of candidate splits CS , and L  represents the 

length of a split 

 .
2

i
i CS

L
TS 

 
  
 

 (3) 

III. EXPERIMENTAL SETTINGS 

To test the proposed method for automatic signal 

segmentation, we used a collection of annotated heartbeat 

sound clips, initially prepared for Classifying Heart Sounds 

Challenge (Dataset A) [32]. An annotated collection of 

sound clips contains 21 recordings captured with 

iStethoscope Pro iPhone app with a sampling rate of 

44,100 Hz and stored in the form of .wav files. The 

recordings were captured in uncontrolled environments. 

Associated with those recordings is a CSV file that contains 

the annotations of heartbeats for each recording. The 

annotations are presented in the form of a sample number 

for each heartbeat. The lengths of the recordings vary 

between 1 seconds and 30 seconds, some of the recordings 

were also clipped in order to reduce excessive noise. 

For the purpose of fair and in-depth validation of our 

experimental results, we performed the well-established 

methodology of 10-fold cross-validation. Because of the 

task we are addressing and also because of the nature of the 

data we are working on, we implemented the 10-fold cross-

validation as follows. First, we randomly divided 21 audio 

recordings into 10 disjointed parts (folds). In the next step, 

we trained our CNN model on 9 out of the 10 disjointed 

parts and tested the performance of the model on the 

remaining one. We repeated this procedure for a total of 10 

times, each time testing the performance with the different 

remaining disjointed part. 

The training parameters were carefully picked, based on 

our previous experience with CNNs and practical 

recommendations [22]. The training was done utilizing 

efficient mini-batch training [33] with a batch size of 

256 epochs and 150 epochs. The Adam [34] was picked as 

the optimization function with a learning rate of 10-3.  

Training of our CNN model was performed on a machine 

with an Intel Core i7-6700K CPU running at 4.0 GHz, 

64 GB of RAM and three dedicated Nvidia Titan X graphics 

cards each with 12 GB of dedicated GDDR5 memory. 

IV. RESULTS 

The reported results were all obtained performing 10-fold 

cross-validation. Given the specifics of the problem which 

we were solving we also used, in addition to the 

conventional classification metrics such as classification 

accuracy, the performance metrics – averaged distance from 

real heartbeat locations, from the previously mentioned 

Classifying Heart Sounds Challenge. The latter is formally 

defined as presented in (4) and (5), where k  denotes the 

calculated averaged distance from real heartbeat locations of 

k-th sound clip, kN  is the total number of heartbeats present 

in the k-th sound clip, iRS  indicates the real location of the 

i-th heartbeat and the iTS  indicates the predicted location of 

the i-th heartbeat, while total  represents the total sum 

distance over all sound clips in the each fold, where j is 

denoting the total number of clips: 

 1 ,
kN

i ii
k

k

RS TS

N
  



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In addition, to present the performance of average 

distance over sound clips in each fold, we are also 

introducing the average  metric which is formally presented 

in (6), where l denotes the number of sound clips in a fold.  

Beside the before presented heart beat distance metrics, 

we are also presenting the classification performance of our 

proposed method, which is utilized for detection of heart 

beats. The classification performance is measured using well 

known classification metrics: accuracy, sensitivity or recall, 

specificity, precision and f-1 score.  

The results of the conducted experiment are presented in 

Table I and Table II. All of the measured metrics are 

reported for each fold separately as well as overall for all 10 

folds. The distance metrics are reported as a number of 

samples. 

 
Fig. 3.  Sound wave plot with real, labeled heartbeats and predicted heartbeats obtained as a result of our proposed method. 
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TABLE I. SIGNAL SEGMENTATION PERFORMANCE. 

Fold δtotal δaverage 
Predicted heartbeats in 

range ±150 ms 

Fold 1 5,272.71 1,748.6 92.98 % 

Fold 2 7,877.47 3,666.38 81.00 % 

Fold 3 6,996.14 3,439.73 75.00 % 

Fold 4 27,128.24 14,477.48 85.00 % 

Fold 5 9,621.66 4,634.54 75.89 % 

Fold 6 46,516.4 27,046.11 64.58 % 

Fold 7 29,618.51 17,249.76 59.17 % 

Fold 8 6,847.81 3,447.66 96.43 % 

Fold 9 8,209.55 4,258.08 83.33 % 

Fold 10 17,806.52 9,566.91 86.11 % 

Average 16,589.50 7,687.89 79.95 % 

Sum 165,895.01 - - 

 

When comparing the average distance of the predicted 

location from the real heartbeat location, our proposed 

method outperforms the existing methods [20], [35]. The 

average distance error over the folds varies from 1,748.6 to 

27,046.11 with a standard deviation of 8,221.53 and 

averages at 7,687.89. Focusing on the overall average 

distance of predicted heartbeat locations from real heartbeat 

locations, we can see that our predicted results are, on 

average, in the defined range of 300 ms (13,230 samples) by 

ANSI/AAMI standards. The rate of correctly predicted 

heartbeats within the mentioned range is also quite 

promising and averages at 79.95 %. 

In contrast to the existing method from [36], when 

analyzing the results of our proposed method we cannot 

observe and detect any performance issues based on the 

length of the sound clip. 

TABLE II. METHOD CLASSIFICATION PERFORMANCE. 

Fold Accuracy 
Sensitivity 

(Recall) 
Specificity Precision 

f-1 

score 

1 82.66 % 83.13 % 82.22 % 81.18 % 82.14 % 

2 75.17 % 70.63 % 78.41 % 70.08 % 70.36 % 

3 70.73 % 59.04 % 75.49 % 49.49 % 53.85 % 

4 82.60 % 69.44 % 92.31 % 86.96 % 77.22 % 

5 77.16 % 72.22 % 80.28 % 69.89 % 71.04 % 

6 77.60 % 55.56 % 92.15 % 82.35 % 66.35 % 

7 73.60 % 60.00 % 78.38 % 49.37 % 54.17 % 

8 87.77 % 80.95 % 90.21 % 74.73 % 77.71 % 

9 75.98 % 70.37 % 78.67 % 61.29 % 65.52 % 

10 75.30 % 77.78 % 73.91 % 62.50 % 69.31 % 

Avg. 77.86 % 69.91 % 82.20 % 68.78 % 68.77 % 

Std. 

dev. 
5.06 % 9.35 % 6.86 % 13.13 % 9.37 % 

 
The classification accuracy over each fold varies from 

70.73 % to 87.77 % with a standard deviation of 5.06 %, 

which is slightly better than the [13] and significantly better 

than the [15] where the score for the dataset A is 55 %. 

Observing the other classification metrics, such as 

sensitivity and specificity, and comparing them with the 

results from [13], [15], and [37], we can see that our method 

achieved better balance of sensitivity vs. specificity, unlike 

the proposed method in [15], which produces great 

sensitivity of 99 % but fails to deliver specificity higher than 

only 11 %. Based on the folds, the f-1 score, the measure 

that considers both precision and recall, is averaging at 

68.77 % with the standard deviation of 9.37 %. 

When observing the Fig. 3, we can see an example of a 

heartbeat sound clip, with its amplitude and with vertical 

lines showing the real and the predicted heartbeat samples. 

The predicted locations of the heartbeats in the presented 

sound clip are all in the defined range of 300 ms versus the 

real location. 

V. CONCLUSIONS 

In this paper, we presented a new method for the 

automatic segmentation of heart sound signals using deep 

CNNs. The heart sound signals, used to evaluate our 

proposed method, were captured in highly variable 

environments with excessive background noise. Although 

there are existing methods which use CNNs for 

classification in signal segmentation, such methods are 

commonly utilizing excessive pre-processing techniques to 

extract features from the signal based on domain knowledge. 

In contrast, our proposed method does not require these 

demanding feature engineering tasks. In our approach, we 

defined a multi-layered deep neural network architecture 

tailored to the process of signal segmentation. In this 

manner, the proposed method performs the segmentation 

and detects heartbeats in a fully automatic manner. The 

results obtained from the conducted experiment are very 

promising when compared to the existing methods, 

especially considering the nature of the used sound 

recordings and the totally straightforward, automatic manner 

of our proposed method. 

Based on these promising results, we would like to extend 

our work and apply more advanced algorithms for the 

calculation of predicted locations of sound beats, as well as 

improve the classification performance of our CNN by 

introducing different learning strategies and utilize some 

neural network hyperparameter optimization methods. 
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