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1Abstract—This paper summarizes multiple cases of high-
pass (HP) and band-pass (BP) analogue filter transfer functions
with fractional order 1 < (1 + α) < 2. All HP and BP transfer
functions are evaluated against the magnitude characteristics of
ideal Butterworth responses when coefficients previously
determined to approximate fractional-order (FO) Butterworth
low-pass (LP) transfer functions are utilized. Comparisons of
the simulated FO HP and BP responses against the ideal
Butterworth responses are presented, with a least squares error
analysis applied to determine the transfer functions that best
approximate the Butterworth response for both HP and BP FO
filters.

Index Terms—Active filters; Butterworth approximation;
Fractional calculus; Fractional-order filters; Transfer
functions.

I. INTRODUCTION

The process of applying an electronic filter to remove
unwanted frequency characteristics from an input signal is
one of the most often used operations in signal processing.
Commonly, these filter circuits are integer order (i.e. 1st, 2nd,
3rd), but recently filter circuits with a fractional-order (FO)
(i.e. non-integer orders, 1.1, 2.7, 6.4, etc.) have been
introduced [1]–[10]. These FO filters import concepts from
fractional calculus and allow for the development of FO
systems that offer better performance and flexibility
compared to their integer-order counterparts [11], [12]. The
order of the filter (n) defines the slope of the magnitude
characteristics in the stop-band of a designed filter. For
example, in the case of low-pass (LP) and high-pass (HP)
filters the stop-band slopes are −20n dB/dec and
+20n dB/dec, respectively. When extending filters to FO
with orders that are positive real numbers, the stop-band
magnitude characteristics become −20(n + α) dB/dec and
+20(n + α) dB/dec for the LP and HP responses,
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respectively, where n is the integer order and 0 < α < 1 is the
fractional component. This increases the range of attenuation
values in the filter magnitude response that are realizable
using the FO filters over their integer-order counterparts.

A FO LP filter with the order 1 < (1 + α) < 2 can be
designed using the transfer functions given by [4]:
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1 1
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( ) ,

kH s
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(1)
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1 1
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where s is the complex variable and the coefficients kA1, kA2,
kA3, kB1, kB2, kB3 are determined based on the desired shape
of the frequency characteristics (cut-off frequency, pass-
band gain, pass-band ripple, stop-band slope, etc.). The
transfer functions (1) and (2) can be implemented by
traditional second-order filter topologies where the standard
capacitor is replaced by FO capacitor with impedance Z =
1/(sαC), where C is a pseudo capacitance with its unit
F·secα−1 [4].

To design a FO LP response with a maximally flat pass-
band, i.e. a Butterworth-like response, the coefficients for
(1) and (2) were previously determined through application
of an optimization routine to approximate the Butterworth
pass-band [4]. This method applied a nonlinear least squares
optimization routine to find the coefficients of the functions
(1) and (2) that best approximated the first-order LP
Butterworth function with pole frequency 1 rad/s in the pass-
band from ω = 0.01 rad/s to 1 rad/s. The interpolated
equations that describe the coefficients k as functions of α,
as presented in [4], are repeated below:

A1 1,k  (3)
2

A2 1.008 0.2867 0.2366,k     (4)

A3 0.2171 0.7914,k   (5)

B1 1,k  (6)
2

B2 0.4838 2.023 0.0104,k      (7)
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2
B3 0.0992 0.0989 1.004.k      (8)

It should be noted that the coefficients for LP FO transfer
functions have also been determined using similar methods
to approximate Chebyshev [5], inverse-Chebyshev [6], and
arbitrary quality factor [7] magnitude responses.

The aim of this paper is to present both FO HP and band-
pass (BP) filter transfer functions and analyse their
magnitude responses using various coefficients in these
functions. This topic has not yet received much attention,
with many FO filter designs for HP and BP transfer
functions using the same coefficients as for the LP function;
under the presumption that the HP or BP transfer function
will have the properties corresponding to the original LP
(e.g. maximally flat magnitude response, the same
characteristic frequency, pass-band gain, etc.) [8], [10]. This
needs to be investigated in detail to understand if this
assumption is valid and provides the motivation and novelty
of this work.

This paper is organized as follows: Section II details the
theoretical description of obtaining various forms of FO HP
transfer functions. Section III numerically evaluates the
accuracy of these HP transfer functions compared to the
first-order Butterworth HP function. With Section IV
presenting several forms of FO BP transfer functions that are
numerically evaluated in Section V. Finally, Section VI
concludes the paper suggesting the extended possibilities of
FO transfer function design using numerical optimization
methods.

II. FRACTIONAL-ORDER HP TRANSFER FUNCTIONS

The following cases describe three forms for HP transfer
functions that can be obtained through transformation of the
FO LP functions (1) and (2).

A. Case HP1
The first case of HP transfer functions is obtained by

multiplying (1) and (2) by s1 + α, which yields:
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The HP transfer function given by (9) was previously used
in [8] and is usually available when another input or output
is selected in a LP filter implemented by a multi-loop
feedback structure. Let us consider the transfer function
coefficients given by (3)–(8), i.e. the Butterworth-like
approximation of the original LP function. Due to the unity
values of the coefficients kA1 and kB1 the high-frequency
pass-band gain of (9) and (10) is unity, i.e. 0 dB. On the
contrary, the LP functions (1) and (2) provide pass-band
gains of 1/kA3 and 1/kB3 respectively, which is not unity for
most values of α. In these cases the LP and the transformed
HP functions are not symmetrical. Thus, this transformation
is not the optimal LP to HP transformation for the FO
transfer functions of the form (1) and (2) that maintains the

lowest deviation from the first-order Butterworth function.
The numerical analyses in the Section III will quantify these
differences and their errors.

B. Case HP2
Similar to the HP1 case, another method to obtain a HP

transfer function from (1) and (2) multiplies them by s1+α and
(assuming kA1 = 1 and kB1 = 1) applies an additional gain
correction 1/kA3 and 1/kB3, respectively:
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The magnitude properties of (11) and (12) are also
evaluated in Section III.

C. Case HP3
The third HP transfer function considered in this work

applies the traditional substitution of the complex variable s
by 1/s. Applying this transformation to (1) and (2) yields the
following transfer functions:

1
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The pass-band gains of (13) and (14) are 1/kA3 and 1/kB3

respectively, when considering the unity values of
coefficients kA1 and kB1, see (3) and (6). The denominator
coefficients of (13) and (14) are interchanged compared to
(1) and (2) with an additional change of the exponent of s in
the middle terms of the denominators. Now, while this
transformation does provide symmetrical HP and LP
magnitude characteristics with respect to the frequency at
1 rad/s, the differences in the denominator coefficients
prevent the simultaneous realization of LP and HP filters
with a single topology without adjusting the circuit elements
and their values.

III. EVALUATION OF THE HP TRANSFER FUNCTIONS

To evaluate each of the HP transfer functions presented in
Section II, their magnitude frequency characteristics
compared to the magnitude of first-order Butterworth HP
transfer function s/(s + 1) are given in Fig. 1 and Fig. 2.
Figure 1 depicts the characteristics of the functions (9), (11),
and (13) with α = 0.5 and the coefficients determined using
(3)–(5), with Fig. 2 presenting (10), (12), and (14) again
with α = 0.5 and the coefficients according to (6)–(8). For
comparison, the first-order Butterworth HP transfer
functions are also shown in both figures as a dashed line.

It is apparent from Fig. 1 and Fig. 2 that each of the FO
HP filters do not realize the same magnitude characteristics.
As the coefficients (3)–(8) for approximating the first-order
LP transfer function in the range 0.01 to 1 rad/s were used, it
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is fair to evaluate the deviation of the FO HP magnitudes
from the first-order one between the reciprocal frequencies 1
to 100 rad/s.
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Fig. 1. Magnitude characteristics of (9), (11), (13) with α = 0.5 compared
to the first-order Butterworth HP response.
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Fig. 2. Magnitude characteristics of (10), (12), (14) with α = 0.5 compared
to the first-order Butterworth HP response.

In Fig. 1 the solid curve presenting (9) has a larger gain
than the ideal Butterworth response in the whole frequency
range of interest and exhibits peaking above the cut-off
frequency. This is also true for the dashed trace which
presents (11) and has an even greater gain deviation from the
ideal Butterworth response than (9). On the other hand, the
dotted curve representing (13) exhibits both positive and
negative errors in the range 1 rad/s to 100 rad/s compared to
the Butterworth response, but is still the most accurate of the
three cases. Thus, the transformation s to 1/s used in the HP3
case is the best choice for transforming FO LP to HP in this
specific frequency band when the LP coefficients are used
for α = 0.5. Note that when considering even higher
frequencies the transfer function (9) has the lowest error as
its magnitude tends to 0 dB.

Observing the responses in Fig. 2, again the dotted trace
representing (14) from the HP3 case provides the best
approximation, with the responses given by (10) and (12)
showing significant deviation from the Butterworth
response; with significantly lower gain in the band from
1 rad/s to 100 rad/s.

To be able to evaluate the accuracy of the HP transfer
functions for any α from the range between zero and one, the
least square errors (LSEs) between magnitudes of these
functions and the first-order Butterworth one were computed
as shown in the following Fig. 3 and Fig. 4. These LSEs
were computed using

2
1 int

1
LSE ( ) ( ) ,

n
i i

i
H H  


    (15)

where |H1+α(i)| is the FO magnitude at frequency i,
|Hint(i)| is the first-order HP Butterworth magnitude at
frequency i, and n is the total number of compared
frequency points. In this case, n = 100 and the datapoints
were selected from the range 1 rad/s to 1000 rad/s.
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Fig. 3. LSE of the functions (9), (11), and (13) compared to the first-order
function depending on α. The frequency range is considered 1 rad/s to
1000 rad/s.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

LS
E

α

(10)
(12)
(14)

Fig. 4. LSE of the functions (10), (12), and (14) compared to the first-
order function depending on α. The frequency range is considered 1 rad/s
to 1000 rad/s.

From Fig. 3, the function (13) provides the most accurate
HP magnitude when compared to the first-order Butterworth
HP response for 0.4 < α < 1. For α < 0.4 the function (9)
shows slightly lower error than (13). It could be expected
that when shifting the upper frequency limit for computing
LSE above 1000 rad/s the transfer function (9) will provide
the lowest LSE from the functions A. It is due to the already
mentioned fact that the magnitude of (9) tends to 0 dB at
high frequencies which is the same as the magnitude of the
first-order HP function. In Fig. 4 it is clear that (14) is the
most accurate for all α values considered, confirming the
results earlier presented in Section II.

It is also useful to investigate the effect of the variations
of the coefficients on the filter responses. Through a series
of numerical simulations, it was noted that the coefficients
kA2 and kB2 affect the magnitude of the HP functions (9)–
(14) at frequencies about 1 rad/s. For example, when kA2 or
kB2 are increased by 1 dB, an increase of 12.2 %, the gain at
1 rad/s decreases by approximately α dB, while the gain at
the stop- and pass-band frequencies remains almost
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unaffected. A 1 dB increase of kA3 and kB3 causes the
magnitudes of (9) and (10) respectively to decrease by
approx. 1 dB in the stop-band regardless of α. In the case of
(11) and (12) this coefficient change causes a decrease of
2 dB in the stop-band and 1 dB in the pass-band. Finally, the
functions (13) and (14) react to this coefficient increase by
decreasing their magnitude by approx. 1 dB in the pass-
band.

IV. FRACTIONAL-ORDER BP TRANSFER FUNCTIONS

The standard LP to BP transformation applied for integer-
order filters results from replacing s with (s2 + 1)/(s·B),
where B is the desired bandwidth (in rad/s). However, this
transformation is not applied here as it leads to a doubling of
the filter order and an increased circuit complexity. Instead,
two cases of FO BP transfer functions are obtained by
multiplying the LP transfer functions (1) and (2) by the
complex variable s or sα. This limits the explored FO BP
transfer functions in this work to only those with order 1 + α.

A. Case BP1
By multiplying (1) and (2) by the complex variable s, the

following BP transfer functions are obtained:

BP1-A A1
1 1

A2 A3
( ) ,

skH s
s s k k

   


 
(16)

BP1-B B1
1 1

B2 B3
( ) .

skH s
s sk k

  


 
(17)

The transfer functions (1) and (16) appeared in [9] as the
LP and BP responses at two outputs of a multi-loop
feedback filter. While the functions (2) and (17) can be
implemented by the Tow-Thomas filter as presented in [10].

The BP filters described by (16) and (17) provide stop-
band attenuations of +20 dB/dec and −20α dB/dec for
frequencies lower and higher, respectively, than the centre
frequency. Thus, these transfer functions represent
asymmetric BP magnitude responses with a stop-band slope
at high frequencies that is dependent on the fractional
component of the filter order.

B. Case BP2
Another method to obtain FO BP transfer functions

multiplies (1) and (2) by the term sα which yields:

BP2-A A1
1 1

A2 A3
( ) ,

s kH s
s s k k



   


 
(18)

BP2-B B1
1 1

B2 B3
( ) .

s kH s
s sk k



  


 
(19)

Similar to the BP1 case, the functions (2) and (19) are
realizable by the filter in [9] and the functions (1) and (18)
by the Tow-Thomas filter in [10]. In contrast to the BP1
cases, the functions (18) and (19) feature stop-band
attenuations of +20α dB/dec and −20 dB/dec for frequencies
lower and higher, respectively, than the centre frequency. In
this case, providing a stop-band attenuation at low
frequencies that is dependent on α.

V. EVALUATION OF THE BP TRANSFER FUNCTIONS

To evaluate the BP transfer functions, the magnitude
characteristics of each response compared to the second-
order Butterworth BP transfer function are presented in
Fig. 5 and Fig. 6. Figure 5 presents the magnitude
characteristics of (16) and (17) with α = 0.5 and the
coefficients according to (3)–(8), with Fig. 6 depicting the
magnitudes of (18) and (19), again with α = 0.5 and the
coefficients according to (3)–(8). In this comparison, the
second-order Butterworth BP transfer function was designed
with a centre frequency of 1 rad/s and gain matched in the
stop-band where the slopes are the same.
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Fig. 5. Magnitude frequency characteristics of (16) and (17) with α = 0.5
compared to the second-order Butterworth BP response.
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Fig. 6. Magnitude frequency characteristics of (18) and (19) with α = 0.5
compared to the second-order Butterworth BP response.

In Fig. 5 the gains of both FO filters and second-order
Butterworth BP filter are almost identical below
approximately 0.7 rad/s. The magnitude of (16) shows both
a higher centre frequency than (17) and higher gain from
0.7 rad/s. As the frequency approaches 100 rad/s the
magnitudes of (16) and (17) approach the expected
−10 dB/dec attenuation.

Figure 6 reveals that the magnitude of (18) is well
matched with the second-order Butterworth response above
1 rad/s and has almost the same centre frequency. On the
other hand, the function (19) has a larger deviation from the
second-order Butterworth BP characteristics in the upper
stop-band, compared to (18), and has larger deviation of the
centre frequency which occurs at 0.6 rad/s.

Additionally, the LSE of the FO BP transfer functions
compared to the second-order Butterworth BP response for
0 < α < 1 were calculated. The LSEs of the BP1 cases given
by (16) and (17) were calculated comparing them to the
second-order Butterworth BP from 0.01 rad/s to 1 rad/s
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using 100 datapoints; with the same process used for the
BP2 cases given by (18) and (19) however in the range
1 rad/s to 100 rad/s. Thus the error was determined only in
the bands where the FO functions have a fixed slope that is
independent of α. These LSEs are presented in Fig. 7 and
Fig. 8.
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Fig. 7. LSE of the functions (16) and (17) compared to the second-order
Butterworth function depending on α. The frequency range is considered
0.01 rad/s to 1 rad/s.
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Fig. 8. LSE of the functions (18) and (19) compared to the second-order
Butterworth function depending on α. The frequency range is considered
1 rad/s to 100 rad/s.

Based on Fig. 7 the function (16) provides lower error
than (17) compared to the second-order Butterworth for
0.065 < α < 1. As seen in Fig. 8 the function (18) has
comparable LSE to the functions (16) and (17) in Fig. 7. On
the other hand, the function (19) displays the highest error
reaching its maximum around α = 0.5. Based on these
results, it is advisable to avoid using (19) with the
coefficients from (6)–(8) to create a FO BP response which
approximates the pass-band characteristics of the
Butterworth response.

Also in the case of the BP responses, the influence of
coefficient variations was investigated using numerical
simulations. The increase of the coefficients kA2 and kB2 by
1 dB causes a decrease of the magnitude of (16)–(19) by
approximately α dB at frequencies about 1 rad/s. The same
change of kA3 and kB3 causes the gain to decrease by approx.
1 dB in the lower stop-band.

VI. CONCLUSIONS

This work has presented multiple methods to generate
(1 + α) FO HP and BP transfer functions from their FO LP
counterparts. The simulated magnitude characteristics of the

generated FO HP and BP transfer functions have been
compared to the ideal Butterworth responses to evaluate the
most appropriate case to realize a FO response that still
approximates the Butterworth response after the
transformation. The presented LSE analyses suggest that in
the frequency range between 1 rad/s and 100 rad/s the FO
HP transfer functions (13) and (14) are the most appropriate
to approximate the first-order Butterworth HP transfer
functions using the previously determined LP coefficients.
Additionally, from the FO BP transfer functions, (16)–(18)
can be chosen without significant differences in their
magnitude characteristics. This work has only explored how
to realize the FO HP and BP responses using the transfer
function coefficients previously determined from FO LP
filters. Further works should investigate if more appropriate
transfer function coefficients can be determined using the
derived FO HP and BP transfer functions and optimization
routines; which may provide a better alternative to designing
these FO filters.
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