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1Abstract—The paper presents proposal of a fully-

differential (1 + α)-order low-pass filter. The order of the filter 

and its cut-off frequency can be controlled electronically. The 

filter is proposed using operational transconductance amplifiers 

(OTAs), adjustable current amplifiers (ACAs) and fully-

differential current follower (FD-CF). The circuit structure is 

based on well-known Inverse Follow-the-Leader Feedback 

(IFLF) topology. Design correctness of the proposed filter is 

supported by PSpice simulations with transistor-level 

simulation models. The ability of the electronic control of the 

order has been tested for five individual values of parameter α. 

Furthermore, the ability of the electronic control of the cut-off 

frequency of the filter has been also tested for five different 

values. Additionally, the simulation results of the proposed 

fully-differential (F-D) filter are compared with the results of 

the single-ended (S-E) equivalent of the presented filter.  

 
 Index Terms—Active filter; fractional-order; frequency 

control; low-pass filter.  

I. INTRODUCTION 

Regardless of the fact that technology is working mainly 

with digital signals nowadays, analog frequency filters are 

a vital part of electronic circuits which are required in cases 

when digital filters cannot be used e. g. the preprocessing 

of the analog signals before the digitalization, etc. One of the 

interesting topics associated with analogue filters, which gets 

in the forefront of interest of many scientific teams, is 

a matter of fractional-order filters [1]–[19]. We can also 

mention other fractional-order circuits such as oscillators 

[20]–[22], or controllers [23], for example. The fractional-

order structures can find practical use in precision 

measurement and modeling of various biological signals, 

[8], [24], [25], agriculture [26] and also in control [23], [27] 

and electrical engineering [1]–[5], [9]–[23]. 

The steepness of slope of attenuation of conventional 

(integer-order) filtering structures is given by the equation 

20∙n dB/decade, where n is a non-zero unsigned integer 
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number. In comparison to conventional filters, the slope of 

attenuation of the fractional-order filters is described by the 

equation 20∙(n + α) dB/decade, where n is again an unsigned 

non-zero integer number and α is a real number in the range 

0 < α <1 [1].  

There are two general ways how to propose a fractional-

order filter. The first possible way how to propose 

fractional-order filters is using so-called fractional order 

elements (FOEs) [6]–[8], [28], [29]. Fractional-order 

capacitors are used most commonly. These elements are then 

placed in the circuit structure of conventional filters. 

The most frequently used way how to create fractional-order 

capacitors is using an RC ladder network [7]–[9]. The circuit 

structures proposed using this method can be relatively 

simple, however, the order of the created filters has a fixed 

value and cannot be controlled electronically. The other 

method is based on usage of an approximation of the 

fractional-order Laplacian operator sα using an integer-order 

transfer function of higher order [1]–[5]. The second order 

approximation is used most commonly [1]–[4], but it is also 

possible to use an approximation of a higher-order function 

[4]. Due to stability, it is necessary to design filters of order 

lower than two. A cascade combination of an integer-order 

and fractional 1 + α filter is used in order to create a 

fractional filter of higher order than 1 + α [4]. The advantage 

of this approach is that the structures are then constructed by 

commercially available active and passive elements. It is 

also possible to achieve electronic control of the order when 

using controllable active elements. The disadvantage can be 

complexity of the circuit structure and a higher number of 

active elements in the filtering structure. 

A low-pass transfer function with Butterworth 

characteristic is the most commonly proposed type of 

fractional-order filter [1]–[5], [7]–[10], [12]–[19]. We can 

also come across papers describing the proposal of high-pass 

fractional-order filters [9]–[11], [17] and band-pass 

fractional-order filters [4], [6], [7], [12], [17]. Some of the 

papers present fractional-order filters with Chebyshev 

characteristics [15], [16]. Most authors focus on the design 

of fractional-order filters operating in the voltage mode [4]–

[7], [10], [12], [16], [18] nevertheless, it is also possible to 
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find fractional-order filters proposed in the current mode [2], 

[3], [11], [14], [19] when the advantages of the current mode 

such as better signal-to-noise ratio alongside with wider 

bandwidth, greater dynamic range and lower power 

consumption can be achieved in particular cases [30]. The 

fractional-order low-pass filter presented in this paper has 

been proposed using operational transconductance 

amplifiers (OTAs), adjustable current amplifiers (ACAs) and 

fully-differential current follower (FD-CF). The advantage 

of the filter is that it offers ability of the electronic control of 

its order and cut-off frequency. The filter is working in the 

current mode when we can benefit from the advantages 

mentioned above. Furthermore, the filter was proposed in its 

fully-differential form which brings the advantages of the F-

D structures in comparison to the single-ended (S-E) circuits 

such as greater dynamic range of the processed signals, 

better power supply rejection ratio, lower harmonic 

distortion and greater attenuation of common-mode signal 

[31].  

Table I provides a comparison of relevant previously 

reported low-pass fractional-order filtering structures. 

As can be seen all these structures are single-ended when we 

cannot benefit from advantages of the F-D structures. 

The other disadvantage of some of these structures ([5], 

[13], [15], [16], [18]) is that they do not provide the 

electronic control of some of the filter parameters and they 

are not working in the current mode.  

II. GENERAL DESIGN OF A LOW-PASS FRACTIONAL-ORDER 

FILTER 

The design procedure which leads to a creation of a (1 + 

α)-order fractional low-pass filter using an approximation 

of Laplacian operator of fractional-order sα is described 

in this section. 

A second-order approximation of Laplacian operator sα is 

given as [1] 
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where a0 = α2 + 3α + 2, a1 = 8 ˗ 2α2, a2 = α2 ˗ 3α + 2. 

A low pass (1 + α)-order transfer function is described 

as [1] 
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where coefficients k1, k2, k3 are used to shape the transition 

between the pass-band and stop-band region. In order 

to obtain a transfer function with Butterworth characteristics, 

coefficients k have the following values [1]: k1 = 1, k2 = 

1.0683α2 + 0.161α + 0.3324, k3 = 0.2937α + 0.71216. 

By substitution of (1) into (2), the fractional-order low-

pass transfer function turns into 
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where b0 = (a0k3 + a2k2)/a0, b1 = (a1(k2 + k3) + a2)/a0 and b2 = 

(a1 + a0k2 + a2k3)/a0. 

Based on the transfer function in (3), it is possible to 

create a block diagram of a desired fractional-order low-pass 

filter. A block diagram can be then easily transformed into 

a circuit scheme of the proposed filter in dependence on 

used active elements. 

III. USED ACTIVE ELEMENTS 

The proposed F-D (1 + α)-order fractional low-pass filter 

has been constructed using three types of active elements. 

The PSpice simulation included in this paper has been 

performed using transistor-level simulation models of the 

used active elements. All simulation models were 

implemented in CMOS 18 µm technology and their supply 

voltage is ±1 V.  

The first used element is well known Operational 

Transconductance Amplifier (OTA), Balanced 

Transconductance Amplifier (BOTA) [32] and Multi-Output 

Transconductance Amplifier (MOTA) [32] respectively. 

Fig. 1(a) and Fig. 1(b) depicts the schematic symbol of the 

BOTA, MOTA element respectively. A CMOS simulation 

model of the MOTA (BOTA) element including the 

transistor dimensions used for PSpice simulations is 

illustrated in Fig. 1(c). This model was taken from [33].  

TABLE I. COMPARISON OF THE PREVIOUSLY REPORTED LOW-PASS FRACTIONAL-ORDER FILTERS. 

Reference Year Type of used active elements 

Number of 

active 

elements 

Number 

of passive 

elements 

Mode 
Electronic 

control 

Experimental 

measurement 

Type of 

structure 

[5] 2015 OPAMP 3 8 VM No No S-E 

[13] 2015 CFOA 4 13 VM No Yes S-E 

[14] 2016 MO-CF, ACA 8 6 CM Yes No S-E 

[15] 2016 OPAMP 3 10 VM No Yes S-E 

[16] 2015 OPAMP 3 8 VM No No S-E 

[18] 2016 DDCC 5 10 VM No Yes S-E 

[19] 2016 OTA, ACA 6 3 CM Yes No S-E 

Fig. 5 - FD-CF, BOTA, MOTA, ACA 6 6 CM Yes No F-D 

Note: a list of previously unspecified abbreviations: OPAMP – Operational Amplifier, CFOA – Current Feedback Operational Amplifier, OTA – 

Operational Transconductance Amplifier, MO-CF – Multi-Output Current Follower, ACA – Adjustable Current Amplifier, DDCC – Differential 

Difference Current Conveyor, FD-CF – Fully-Differential Current Follower, BOTA – Balanced Transconductance Amplifier, MOTA – Multi-Output 

Transconductance Amplifier, CM – Current Mode, VM – Voltage Mode, S-E – Single-Ended, F-D – Fully-Differential. 
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Fig. 1.  Schematic symbol of the BOTA element (a); Schematic symbol of 

the MOTA element (b); Used transistor-level model of the MOTA (BOTA) 

element (c). 

The relations between the input and output terminals 

of the MOTA (BOTA) element are described by: iOUT+ = 

iOUT˗ = gm(vIN+ ˗ vIN˗), where gm is the transconductance of 

this element. The transconductance of this particular 

implementation of the MOTA (BOTA) is controlled 

electronically by control current Isetgm.  

The second used active element is Fully-Differential 

Current Follower (FD-CF) [34]. Its schematic symbol and 

CMOS simulation model including the transistor dimensions 

of this active element taken from [35] are shown in Fig. 2(a), 

Fig. 2(b) respectively. Behavior of this active element is 

given by the following relations: iOUT1 = iOUT3 = (iIN+ ˗ iIN˗), 

iOUT2 = iOUT4 = ˗ (iIN+ ˗ iIN˗).  

The last used element is Adjustable Current Amplifier 

(ACA) [36]. This active element can be described 

by following relation: iOUT+ = − iOUT− = B · (iIN+ − iIN−), where 

B is current gain of the ACA element. The current gain 

of the ACA element is controlled by control current IsetB in 

this particular case. Figure 3 illustrates the schematic symbol 

and CMOS simulation model including the transistor 

dimensions [36] used for PSpice simulations. 
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Fig. 2.  Fully-Differential Current Follower: a) schematic symbol, b) used 

transistor-level model. 
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Fig. 3.  Adjustable current amplifier: a) schematic symbol, b) used transistor-level model. 

IV. DESCRIPTION OF THE PROPOSED FILTER  

The presented filter is a fully-differential form of the S-E 

(1 + α)-order low-pass filter proposed in [37]. The F-D filter 

was obtained by transformation of its single-ended form 

(“mirroring” passive parts around horizontal plane of the 

filter). The circuit structure of the S-E filter from [37] is 

shown in Fig. 4. It employs one MO-CF, three OTAs (two 

OTAs and one MOTA) and two ACAs. Figure 5 depicts the 

proposed F-D (1 + α)-order low-pass filter. It consists of one 

FD-CF, three OTA (two BOTAs and one MOTA) and two 

ACAs. Thus, the number of the used active elements in the 
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F-D structure stays the same as in case of the S-E filter from 

[37]. 

The transfer function of both S-E and F-D filter is given 

by 

 ( ) ,
N

K
D

s  (4) 
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The values of current gains of the ACA elements for the 

F-D filter must be half the values of current gains used in 

case of the S-E filter in order to obtain the same transfer 

functions for both S-E and F-D filter. The values of 

capacitors used for the F-D filter must be two-times higher 

than the values of capacitors of the S-E filter. 

The proposed filter offers ability of the electronic control 

of its order by changing values of transconductances gm 

together with current gains B. The cut-off frequency of the 

filter can be also controlled electronically by simultaneous 

change of values of transconductances. 

V. SENSITIVITY ANALYSIS OF THE PROPOSED FILTER 

A relative sensitivity analysis of the presented F-D 

(1 + α)-order low-pass filter has been carried out. The F-D 

filter from Figure 5 contains 25 parameters (certain 

fabrication mismatch of the individual outputs of each active 

element is considered, therefore, each output is presented by 

an individual parameter). 
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Fig. 4.  Single-Ended (S-E) structure of the proposed fractional-order frequency filter. 
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Fig. 5.  Fully-Differential (F-D) form of the fractional-order frequency filter. 

The considered parameters are: C1, C2, C3, gm11, gm12, 

gm21, gm22, gm31, gm32, gm33, gm34, gm35, gm36, gm37, gm38, n1, n2, 

n3, n4, n5, n6, B11, B12, B21, B22) where gm11, gm12, gm21, gm22, 

gm31, gm32, gm33, gm34, gm35, gm36, gm37, gm38 are 

transconductances of individual outputs of BOTA1, BOTA2 

and MOTA elements, n1, n2, n3, n4, n5, n6 are transfers of 

individual outputs of the FD-CF element and B11, B12, B21, 

B22 are current gains of individual outputs of the ACA 

elements. 

The change of any of these parameters can significantly 

influence the characteristics of the filter. When taking all 

these parameters into consideration, the denominator of the 
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presented F-D filter turns into 

 3 2
3 2 1 0( ) ,realD d d d d   s s s s  (7) 

where: 
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The numerator takes a form of 
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Mathematical expression of individual relative 

sensitivities was performed using Maple program. Individual 

calculations are not included due to their excessive content. 

The relative sensitivity is the highest in case of parameters 

C2, C3 and gm34. 

The sensitivity analysis focuses on the sensitivity of the 

transfer function of the filter covering the entire frequency 

band. The relative sensitivity of the filter to the influence 

of individual elements on the transfer function of the filter 

can be described as [38] 
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where K = K(jω) is a complex transfer of the filter 

K = IOUT/IIN respectively and qi denotes the parameter of i-th 

element in the circuit. 

Figure 6 illustrates the relative sensitivity of the 

magnitude of transfer function of the F-D filter from Fig. 5 

to the given parameters of the filter. It can be seen that the 

individual relative sensitivities have typical values (up to 1). 

These sensitivities were taken into consideration during the 

proposal. 

 
Fig. 6.  Relative sensitivity of the magnitude of transfer function of the F-D 

filter from Fig. 5 for individual parameters depending on the frequency (f0 

= 100 kHz). 

VI. SIMULATIONS RESULTS 

The PSpice simulations of the proposed F-D filter from 

Fig. 5 have been carried out using transistor-level models 

described in Section III to support the correctness of the 

proposal. The simulations of the S-E filter from Fig. 4 have 

been also made in order to compare characteristics of the F-

D and S-E filter. 

The initial values of the filter parameters and passive parts 

were chosen accordingly: the starting value of the filter order 

is 1.5 (α = 0.5) and the cut-off frequency f0 = 100 kHz, the 

values of capacitors C1 = 820 pF, C2 = C3 = 560 pF. Based 

on these values, the values of remaining passive and active 

elements were calculated as follows: transconductances 

gm1 = 146 µS, gm2 = 376 µS, gm3 = 934 µS and current gains 

B1 = 0.6 and B2 = 0.068. 

Figure 7 shows the ability to control the order of the 

proposed F-D filter and its S-E equivalent.  

-60

-50

-40

-30

-20

-10

0

1,00E+03 1,00E+04 1,00E+05 1,00E+06 1,00E+07 1,00E+08

G
a

in
[d
B
]

Frequency [Hz]

1.1 F-D 1.3 F-D 1.5 F-D 1.7 F-D 1.9 F-D
1.1 S-E 1.3 S-E 1.5 S-E 1.7 S-E 1.9 S-E

 
Fig. 7.  Example of the magnitude responses of order tuning of the F-D 

fractional-order filter (solid lines) in comparison with simulation results 

of the S-E filter (dashed lines). 

The order can be controlled electronically by changing 

values of individual transconductances gm and current gains 

B. This was tested for five different values of parameter α 

(0.1, 0.3, 0.5, 0.7, 0.9) when the cut-off frequency was 100 
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kHz. The calculated values of used passive parts, 

transconductances and current gains for chosen values of 

parameter α are summarized in Table II. The values of 

transconductances are the same for both S-E and F-D filter. 

The values of capacitors and current gains of the S-E filter 

are given before the slash and the values of capacitors and 

current gains in case of the F-D filter are given after the 

slash in Table II. 

TABLE II. USED VALUES OF PARAMETERS C, GM AND B FOR 

SELECTED ALPHA. VALUES FOR S-E / F-D CONFIGURATION 

OF THE FILTER. 

α [-] 0.1 0.3 0.5 0.7 0.9 

C1 [pF] 820/1640 

C2 = C3 [pF] 560/1120 

gm1 [µS] 112 133 147 174 210 

gm2 [µS] 340 370 370 417 417 

gm3 [µS] 1499 1181 909 909 954 

B1 [-] 
0.760/ 

0.380 

0.700/ 

0.350 

0.610/ 

0.305 

0.515/ 

0.258 

0.428/ 

0.214 

B2 [-] 
0.170/ 

0.085 

0.117/ 

0.059 

0.070/ 

0.035 

0.033/ 

0.017 

0.008/ 

0.004 

 

The slope of attenuation for selected values of α, obtained 

from the simulations of the proposed F-D filter (colored 

solid lines) and simulations of its S-E equivalent (black 

dashed lines) are compared in Table III. It can be seen that 

the values of the slope of attenuation obtained from the 

proposed F-D filter are usually slightly higher and closer to 

the theoretical expectations than the values obtained from 

the S-E filter. 

TABLE III. THEORETICAL AND SIMULATED VALUES OF THE 

SLOPE OF ATTENUATION WHEN CHANGING THE ORDER. 

α [-] 0.1 0.3 0.5 0.7 0.9 

Theoretical slope of 

attenuation [dB/dec] 
22.0 26.0 30.0 34.0 38.0 

Simulated S-E slope of 

attenuation [dB/dec] 
20.8 25.5 30.3 34.5 36.7 

Simulated F-D slope of 

attenuation [dB/dec] 
21.2 26.0 30.6 34.4 37.1 

 

Figure 8 illustrates simulated phase responses of transfer 

functions of the proposed F-D filter (colored solid lines) and 

simulations of its S-E equivalent (black dashed lines) from 

Fig. 7. It can be seen that the phase responses correspond 

with the particular order. For example, the phase response 

of 1.1 order ends around 90 degrees, or the phase response 

of 1.9 order is getting close to 170 degrees etc. 

The ability to control the cut-off frequency of the 

proposed F-D filter and its S-E equivalent is depicted in 

Fig. 9. The cut-off frequency can be controlled electronically 

without disturbing the desired order by changing values 

of transconductances gm when maintaining current gains B 

unchanged. This ability has been tested for 5 different cut-

off frequencies (50 kHz, 75 kHz, 100 kHz, 150 kHz and 

200 kHz) when the order of the filter was set to 1.5. 

Table IV summarizes the calculated values of used passive 

parts, transconductances and current gains for chosen values 

cut-off frequencies. The values of transconductances are 

again the same for both S-E and F-D filter. The values 

of capacitors and current gains of the S-E filter are given 

before the slash and the values of capacitors and current 

gains in case of the F-D filter are given after the slash. 
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Fig. 8.  Illustration of the phase responses of the order control of the F-D 

fractional-order filter (solid lines) in comparison with simulation results 

of the S-E filter (dashed lines). 

TABLE IV. USED VALUES OF PARAMETERS C, GM AND B FOR 

SELECTED F0 WHEN ALPHA = 0.5. VALUES FOR S-E / F-D 

CONFIGURATION OF THE FILTER. 

Theoretical pole 

frequency [kHz] 
50 75 100 150 200 

C1 [pF] 820/1640 

C2 = C3 [pF] 560/1120 

gm1 [µS] 74 110 147 220 294 

gm2 [µS] 182 278 370 556 769 

gm3 [µS] 465 667 909 1333 1818 

B1 [-] 0.610/0.305 

B2 [-] 0.070/0.035 

 

The obtained values of the cut-off frequency from the 

simulations of the proposed F-D filter (colored solid lines) 

and simulations of its S-E equivalent (black dashed lines) 

can be compared in Table V. The obtained values show that 

the pole frequency of the proposed F-D filter is closer to the 

theory at lower frequencies than the values of the cut-off 

frequency of the corresponding S-E filter. The cut-off 

frequency of the F-D filter is at higher frequencies higher 

than the expected values and the difference is more 

significant as the frequency increases. 

The phase responses corresponding with the transfer 

functions of the proposed F-D filter (colored solid lines) and 

simulations of its S-E equivalent (black dashed lines) from 

Fig. 9 are shown in Fig. 10. The largest differences between 

the responses of the S-E and F-D filter can be seen at higher 

frequencies. 

TABLE V. THEORETICAL AND SIMULATED VALUES OF THE CUT-

OFF FREQUENCY WHEN THE ORDER EQUALS 1.5.  

f0 [kHz] 50 75 100 150 200 

Simulated S-E cut-

off frequency [kHz] 
52.1 78.9 102.4 151.4 201.3 

Simulated F-D cut-

off frequency [kHz] 
48.9 76.4 101.9 156.5 216.6 
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Fig. 9.  Example of the magnitude responses of pole frequency tuning 

of the F-D fractional-order filter (solid lines) in comparison with simulation 

results of the S-E filter (dashed lines). 
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Fig. 10.  Illustration of the phase responses of the order control of the F-D 

fractional-order filter (solid lines) in comparison with simulation results 

of the S-E filter (dashed lines). 

Figure 11 compares the DC function of the proposed F-D 

filter and its S-E equivalent. It can be seen that the F-D filter 

provides greater dynamic range because the transfer function 

is linear in the wider range. 
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Fig. 11.  Comparison of the DC function of the S-E and F-D filter. 

VII. CONCLUSIONS 

To the best of author’s knowledge, F-D fractional-order 

filter has not been previously reported in open literature 

as well as its features were not compared with S-E prototype 

in previous research works. The filter proposed in this paper 

was designed in the F-D form when we can benefit from the 

advantages of F-D structures. The simulation results using 

transistor-level models of the used active elements proved 

the design correctness and functionality of the proposed 

filter. When comparing the results of the presented filter 

with its S-E ended form, the slopes of attenuation of the F-D 

structure for selected values of the order are usually closer to 

the theory than in case of the S-E filter. Furthermore, the 

values of cut-off frequencies obtained from simulations in 

case of the F-D filter show smaller error with respect to the 

theoretical values at lower frequencies (see Table V). 

Available dynamic range of the F-D variant of the filter is 

bigger than in case of S-E structure as can be seen in Fig. 11. 
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