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Abstract—Augmented reality started to emerge as a
promising visualization technique that tracks real objects and
adds virtual content into real world context using camera view.
Many augmented reality solutions are based on computer vision
techniques to identify and track objects. Problems that must be
solved are image transformations, chaotic environment, lighting
condition and occlusion from users’ or objects in the
environment, which causes virtual content to disappear. This
has a negative impact for augmented reality usability, therefore,
object recognition and tracking in real-time becomes difficult
and sometimes an impossible task. In this research orientation-
position information acquisition using computer vision and
sensor fusion techniques are analysed. Experiments are
accomplished with predefined assumptions and simulated
orientation-position information. Conditions for optimal
orientation-position estimates are introduced. Research results
are compared and supplementary properties are presented of a
proposed hybrid tracking technique using Kalman filter.

Index Terms—Augmented reality; computer vision; hybrid
tracking; Kalman filter; sensor fusion.

I. INTRODUCTION

Most of the research work in augmented reality (AR) field
investigates problems that are related to tracking and
interaction techniques. Using tracking techniques virtual
content can be represented in appropriate orientation and
position, while changing users’ perspective, and interaction
techniques allow users to manipulate with virtual content.
Nowadays implemented object tracking solutions for AR are
often based on computer vision (CV) techniques such as
SIFT, FERNS, SURF, FAST or other similar methods and
their modifications [1]–[5]. Several tasks must be taken into
consideration using augmented reality systems that are based
on computer vision techniques:

1. Locate and track object in the scene.
2. Display virtual content depending on a trackable object
orientation and position.
3. Ensure an opportunity to interact with content.

While tracking object in real environment conditions
several problems must be solved: illumination level, image
transformations because of different camera perspective,
image quality, reflection and partial or full occlusion at the
same time. As a result, less permanent features are detected
and matches are found between different viewpoints of the
same scene to accomplish reliable object tracking. Virtual
content is not displayed, if the tracking is lost. Image
processing speed is also critical aspect for AR and must be
accomplished in real-time.

Depending on AR application field ultrasonic tracking
technique [6] is a solution for position tracking. However, it
is limited to workspace and no orientation estimates are
provided. Currently object motion tracking using digital
inertial sensors is an active research topic that are analysed in
[7], [8] works. Fast and irregular camera movement causes
tracking errors and instabilities in case of computer vision.
These problems can be solved using inertial sensors to
estimate rapid camera orientation changes. Camera tracking
using inertial sensors is a suitable method because of a high
speed measurement acquisition. However, it is important to
maintain stability after a longer period of time. Sensors are
affected by noise, drift and magnetic interference. By
integrating and combining several sensor information
disadvantages of separate sensors can be eliminated using
sensor fusion solutions [9]–[11]. In this way reliable
orientation estimates are provided.

This paper describes position and orientation estimation
problems, which is critical in the field of augmented reality,
and proposes a way to improve it. In this research no specific
computer vision method was proposed. However,
assumptions were made that object can be recognized and
tracked in an image at 20 frames per second (has a
disadvantage in speed). Wrong or unavailable orientation-
position estimates using computer vision tracking can be
improved or supplemented with additional estimates using
sensors. Orientation and position estimation is the main
aspect, which is analysed in this work. To achieve better
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orientation-position estimates Kalman filter for hybrid
tracking technique was designed. Computer vision (CV) and
sensor fusion (SF) tracking information were simulated.

II. OBJECT TRACKING USING SENSOR FUSION

Orientation estimation using digital sensors is an active
research topic. Digital accelerometer measures acceleration
and gravity of the device. In general case, this sensor is
suitable to estimate an orientation of the object, depending on
Earth’s gravitational force. According to accelerometer
acquired measurements, orientation  T

tt
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where xa , ya , za – accelerometer output at current time
moment with respect to x, y and z axis. Sensor measurements
in a stable state are affected by noise, therefore, a (rotation
around x axis – roll) and a (rotation around y axis – pitch)
orientation estimates can be wrong and unreliable. Gravity
force does not provide information about a angle (rotation
around z axis – yaw).

Gyroscope angular rate measurements are not affected by
noise and do not accumulate errors. Object orientation vector

 T
ttt   ,,,,  is estimated by using (2)
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where
tx ,

ty ,
tz – gyroscope angular rate at current time

moment t;
1t ,

1t ,
1t – estimated orientation at earlier

time moment t-1; t – time between measurements.
Estimated orientation using gyroscope angular rate
measurements are accurate only in a short period of time.
After a longer period of time drift exponentially increases and
errors are accumulated without any fixed reference system.
For augmented reality tracking system, it is a critical aspect.

Heading b from magnetometer can be determined using
the following (3)–(5):

cos sin sin cos sin ,h x y zX m m m       (3)

cos sin sin ,h y zY m m    (4)

 arctan ,h hb Y X   (5)

where xm , ym , zm – magnetic field measurements from
magnetometer;  ,  corresponds to a and a estimated
orientation using the accelerometer (1). One of the
magnetometers disadvantages – magnetic field measurements
are affected by distortions, which are caused by
ferromagnetic objects. These distortions can be compensated.

A combination of an accelerometer, gyroscope and
magnetometer digital sensors measurements are used to
ensure reliable object orientation in 3D space. Orientation
drift using gyroscope is eliminated with accelerometer, which
contributes in correcting  and  angles. Magnetometer
ensures corrected  heading measurements in combination
with accelerometer. This is the main idea for sensor fusion
using quaternion representation. Quaternion requires less
calculation time, provides reliable orientation estimation and
maintains stability compared to Euler angles or rotation
matrix representation. Quaternion q is a four element vector
(6)

   0 1 2 3, , , , , , ,q q q q q w xi yj zk  (6)

where  wq0 determines the rate of rotation;  xq1 ,  yq2 ,
 zq3 – rotations in respect to x, y and z axis. Quaternion-

based algorithms for orientation estimation using sensors are
explicitly analysed in [8], [9], therefore, no detailed analysis
are provided in this work. Systems that uses such orientation
estimation techniques are not limited to motion, specific
environment, place or occlusions, therefore, it has advantages
over computer vision techniques.

Even though quaternion representation of orientation is
more reliable, for simplicity purposes in further hybrid
tracking experiments Euler angles are used instead of
quaternions. Euler angles  Tae  ,, can be converted
from quaternions using (7) expression
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Position estimation is a difficult, but possible task using
accelerometer measurements data. As mentioned before,
accelerometer output jointly measures acceleration and
gravity, therefore, it is necessary to eliminate gravity to get
linear acceleration. If measurements from sensor array
(accelerometer, gyroscope and magnetometer) are available,
then gravity vector  Tzyx gggg ,, can be estimated using
orientation represented in quaternion (8)
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(8)

where 0q , 1q , 2q , 3q – quaternion elements that represent

orientation; xg , yg , zg – accelerometer gravity direction

with respect to each axis. Estimated orientation using
quaternion representation must be accurate. Even small errors
in orientation estimation that are used to calculate gravity
vector can cause large errors in linear acceleration. Linear
acceleration vector ga with eliminated gravity g from
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accelerometer output can be estimated using (9)
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Using linear acceleration ga , velocity tv and position tp
vectors are estimated for each axis using (10) and (11)
expressions:

1 ,
tt t gv v a t   (10)

2
1 2,

tt t t gp p v t a t     (11)

where t – time between measurements. As accelerometer
measurements are affected by noise, it cannot be efficiently
eliminated for position estimation. For further experiments
estimated orientation and position-velocity-acceleration
vector sfx using sensors are modelled using (12) expression
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III. OBJECT TRACKING USING COMPUTER VISION

Computer Vision methods use feature extraction
(detection) and description as a primary analysis aspect to
find interest points in an image and matching to perform
object tracking. This allows estimating relative orientation
and position of the camera using RANSAC probability
method. From geometric perspective it can be explained by
using pinhole camera model, which is widely used and
analysed in computer vision researches. It defines a
relationship between 3D point  TZYXP ,, from the scene
and 2D corresponding projection  Tyxp , onto the image
plane. Mapping from 3D to 2D is called perspective
projection and can be expressed using (13):




11 12 13 1

21 22 23 2

31 32 33 3

int

0
0 ,

1 0 0 1 1

x x

y y

p extrinsic parameterrinsic parameter P

X
x f c R R R T

Y
y f c R R R T

Z
R R R T

 
                                       
 



(13)

where xf , yf – focal length; xc , yc – optical centre of the
camera. Intrinsic parameters are used to remove distortions.
The extrinsic parameter is a transformation matrix in camera
coordinate system, which consists of rotation matrix 33R for
orientation and translation vector 13T for position. Computer
vision techniques focus on estimating this fundamental
transformation matrix. Rotation matrix can be converted to
Euler angles using (14) expression:
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In case of computer vision, orientation and position vector
cvx is modelled using (15)

, , , , , .cv cv cv cv x y zx p p p      (15)

where cv cv cv converted orientation from rotation
matrix 33R to Euler angles using (14) and xp , yp , zp are
position coordinates from translation vector 13T in (13).

IV. KALMAN FILTER FOR HYBRID TRACKING

Two main aspects are important from user’s perspective
using AR system:

1. System must operate in real-time without any delay.
2. Even in rapid movement and occlusion tracking must be
robust without any jittering.
While representing virtual content in augmented reality

environment these aspects must be ensured with no
interruption using hybrid tracking. Dynamic motion
measurements from sensors are used to improve provided
information from computer vision method. Conceptual
diagram of data acquisition and processing from sensors and
general purpose camera is presented in Fig. 1.

1. Feature extraction

I. Image processing using
general purpose camera

2. Feature description

3. Feature matching

4. Outlier rejection

5. Homography estimation

6. Camera orientation and
position estimation

AccelerometerGyroscopeMagnetometer

2. Sensor Fusion

Kalman filter

Image acquisition

xcv = [φcv, θcv, ψcv, px, py, pz]

II. Sensor array measurements
processing

1. Sensor measurements data acquisition

Virtual contentAugmented reality solution

3. Orientation estimation using quaternion-based
algorithm

4. Position estimation

III. Hybrid tracking

xKF = [φ, θ, ψ, px, py, pz]

xsf = [φsf, θsf, ψsf, [px, vx, agx], [py, vy, agy], [pz, vz, agx]]

Fig. 1. Kalman filter for Hybrid tracking: orientation and position estimation
using computer vision and sensor fusion techniques.

This is a general model for hybrid tracking technique. The
following assumptions for further hybrid tracking technique
must be taken into consideration:

1. Calibration of camera and sensors are accomplished off-
line.
2. Sensors are rigidly attached to camera, therefore, it is
considered that coordinate systems coincide.
3. Data are acquired and processed synchronized to get
orientation-position information by applying CV and SF
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methods. Even small synchronization misalignments can
lead to large tracking errors.
4. CV and SF data processing are implemented on different
threads.
5. Processed data acquisition frequency from CV method
is 20 Hzcvf   0.05t  and SF – 100 Hzsff 

( 0.01)t  .
6. Sensors attached to the camera moves in the
environment, not the object that can be tracked in the scene
using CV.
7. CV method provides relative information about camera
orientation-position. Accordingly, CV and SF orientation-
position information are simulated from the common
starting point.
The last assumption is the main aspect for orientation-

position estimation, because information does not coincide
when sfx and cvx vectors are taken separately. For instance,
in case of CV relative camera orientation-position
information is estimated from the object that is found and
tracked in the scene and sensor fusion solution provides this
information directly from a camera motion.

After taking assumptions into consideration, Kalman filter
(KF) is applied for simulated orientation-position
information. KF algorithm is recursive and widely used in
object trajectory prediction, control, tracking, collision-
warning systems, image processing, sensor fusion etc. KF
consists of prediction (process model) (16)–(17) and update
(measurement model) (18–20) steps:

1. State prediction kx̂ (16)

1ˆ .k k kx Ax w  (16)

2. State covariance kP̂ prediction (17)

1ˆ .T
k kP AP A Q  (17)

3. Gain kK calculation to correct state prediction kx̂ (18)

  1ˆ ˆ .T T
k k kK P H HP H R


  (18)

4. State estimate kx update using measurement kw (19)

 ˆ ˆ .k k k k kx x K z Hx   (19)

5. Covariance kP update (20)

  ˆ ,k k kP I K H P  (20)

where kx̂ – state prediction vector affected by noise kw ; kx
– update vector; kkk vHxz  – measurement vector affected
by noise kv ;  QNwk ,0~  RNvk ,0~ – respectively process
prediction and measurement update independent Gaussian
noises; A – state transition matrix; kP̂ , kP – respectively

prediction and update state covariance matrix;  T
kk wwEQ  ,

 T
kk vvER  respectively independent process and

measurement noise covariance matrices; H – measurement
matrix; I – identity matrix. In the update step the difference
between measurement and prediction states are compensated
and new estimates determined. KF convergence rate depends
on Q and R values; decreased value of Q or R shows
confidence in either process or measurement steps.

Analysing independent innovation kŷ (21) or residual ky
(22) sequences KF efficiency can be determined, which is a
reliable quality indicator:

ˆ ˆ ,k k k ky z H x  (21)
.k k k ky z H x  (22)

In an ideal case, dynamic systems’ innovation kŷ and
residual ky has to be zero or near zero mean value.

V. EXPERIMENTAL RESULTS

For simplicity purposes SF vector sfx is separated into two

parts: orientation  sfsfsf
o
sfx  ,, and position-velocity-

acceleration       
zyx gzzgyygxx

p
sf avpavpavpx ,,,,,,,, vectors.

CV vector cvx is also separated in orientation

 cvcvcv
o
cvx  ,, and position  zyx

p
cv pppx ,, parts. From

here some matrices are denoted by superscript “o” for
orientation and superscript “p” for position or position-
velocity-acceleration vectors to avoid confusion:
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(26)

Two different KF perspectives are used for orientation and
position estimation. CV has slower data processing rate,
therefore, available faster SF information is used for
prediction between CV samples. According to the described
orientation and position estimation scenarios KF is applied
using prediction and update equations (16-20). In orientation
estimation scenario three orientation states  ,  ,  are
estimated using KF for hybrid tracking. Simulated camera
orientation ( angle) using SF and CV are presented in
Fig. 2.

Initial tracked object orientation is 90 degrees. Processed
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data are acquired at constant time intervals from camera and
sensors. Similar orientation results would be obtained for 
and  angles. Camera orientation is simulated in rapid
motion. Even though most of the time orientation using CV
is available, in some cases, tracking is improperly estimated
that causes spikes or it can be lost (red crosses) because of the
occlusion.

Fig. 2. Simulated SF and CV orientation with modelled outliers and
unavailable orientation segment using CV.

Kalman filter for hybrid tracking starts after the orientation
information is acquired using CV method and used as an
initial state 0x (starting point) in prediction equation. Update

vector 1kx in prediction (16) corresponds to o
cvx computer

vision orientation vector and measurement kz corresponds to
o
sfx sensor fusion orientation vector. In general case, better

confidence is assigned to available CV information (Q for
process), rather than SF (R for measurement):

4
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Posterior update state kx using SF measurement kz is used
in prediction step with the same confidence as CV
information, if orientation vector 1kx using CV is
unavailable for state prediction kx̂ . Also, the following
conditions are introduced to determine the confidence, when
wrong CV orientation vector is acquired:

,

ˆ , ,
ˆ ,
k k TH

k k TH

y z z trust is given to process
y z z trust is given to measurement
  
  

(29)

where THz – determined 5 % threshold parameter. Innovation
comparison with kz takes place as measurements from SF are
always available. If the error in CV is critical, innovation

exceeds a threshold of kz measurement, therefore, better
confidence is provided to measurement. In real-life
conditions, existing errors in CV provides considerable
differences comparing to SF orientation information. If CV
information is available without any errors, innovation does
not exceed a threshold, as it provides similar results to SF
orientation. Estimated orientation using Kalman filter for
hybrid tracking presented in Fig. 3.

a)

b)
Fig. 3. Hybrid tracking for orientation estimation.

Spike in CV orientation is successfully eliminated using
KF. The same applies to unavailable orientation information
from CV. Innovation results in case of orientation are
presented in Fig. 4.

Spikes in innovation are errors from CV orientation
information and are taken into consideration while estimating
orientation using Kalman filter for hybrid tracking.

In position estimation scenario only one coordinate is
tracked. For position estimation SF information is used in
process model and CV information in measurement model.

pA (23) also known as constant acceleration model (for
process model) is used to calculate only 1-axis vector of
position, velocity and acceleration. For the other two axes the
same model should be applied as well. In case of
measurement part, interest holds only in position. Velocity
and acceleration are not observed, therefore pH is used

errors
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according to (26) equation. Simulated noisy acceleration and
estimated position are presented in Fig. 5.

Fig. 4. Orientation prediction and update innovation sequences.

a)

b)
Fig. 5. Simulated acceleration for position estimation: a) noisy acceleration
(normal distribution with 2.0 ) for position estimation; b) drifted position
estimates from noisy acceleration compared to ground truth.

Positive and negative values in the diagrams show a
direction of acceleration and position. In process model
 1kx  position-velocity-acceleration information is

estimated from acceleration and in measurement model  kz
position is acquired from CV. Better confidence is provided
to a computer vision information since using noisy
acceleration measurements position estimates accumulates
considerable errors. Position innovation sequences are
presented in Fig. 6.

Fig. 6. Position prediction and update innovation sequences.

To avoid increasing difference between process and
measurement estimates, modifications are made in prediction
equation (16) by adding control vector:

1ˆ ,p
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where B – control matrix; ku – control vector 4n – four last
available measurements from CV. By adding control vector,
which consists of modified innovation m

kŷ it is ensured that
position estimation from SF will not diverge between CV
samples. Modified innovation is calculated using previously
available kz measurements using CV and current estimated
position from sensors, until the next available CV position
information. Estimated position using Kalman filter for
hybrid tracking presented is in Fig. 7.

The main demand for AR hybrid tracking technique is in
case of a lost object tracking using CV to provide camera
orientation-position information from additional sources –
inertial sensors. Summarized results of the accomplished
experiments are presented in Table I and Table II.

GT denotes ground truth. In presented orientation-position
estimation results KF for hybrid tracking shows the best
results: mean and standard deviation is nearest to the ground
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truth value. In case of root mean square error in orientation
estimation the error is smallest from 90 degrees (an original
state in object tracking) and in case of position it is near zero
value, which is reliability indication of estimated results.

a)                                                          b)
Fig. 7. Hybrid tracking for position estimation.

TABLE I. MEAN (  ), STANDARD DEVIATION ( ), ROOT MEAN
SQUARE ERROR RESULTS FOR ORIENTATION ESTIMATION.

Parameter Orientation estimation (degrees)
GT SF CV KF

 90.000 90.300 88.551 90.277
 63.672 63.725 63.843 63.684

RMSE - 89.727 90.27 89.787

TABLE II. MEAN (  ), STANDARD DEVIATION ( ), ROOT MEAN
SQUARE ERROR RESULTS FOR POSITION ESTIMATION.

Parameter Position estimation (meters)
GT SF CV KF

 0.314 0.344 0.319 0.314
 0.351 0.376 0.358 0.352

RMSE - 0.041 0.062 0.003

Other researches related to the tracking approaches does
not provide their experimental results, nor ground truth values
in a numeric form to make objective comparisons. As a result,
all experiments were accomplished with simulated data.
Improvements using Hybrid tracking are presented in
Table III.

TABLE III. SUMMARY OF HYBRID TRACKING IMPROVEMENTS.

Tracking technique
Orientation Position

Slow Fast Slow Fast
Based on computer vision +/- - +/- -

Based on sensor fusion + + +/- +/-
Based on hybrid + + + +/-

In case of slower camera motion speed, orientation
estimation using CV holds reliable estimates compared to fast
motion, when object recognition and tracking in the image is
difficult or impossible. In case of CV “+/-” denotes additional
conditions: whether the object in the scene is recognized or
not. Unavailable or occluded object in the scene is a
possibility. SF orientation accuracy is not affected by motion
speed. In case of SF “+/-” denotes unreliable position
estimation. Kalman filter for hybrid tracking balances
between reliable and unreliable estimates from CV and SF
estimates. Sign “-” shows that object position and orientation
tracking is not possible. It is important to note that computer
CV and SF must be implemented on different threads. This
allows to avoid system delay and accomplish data processing
independently. Even though this research focus on a hybrid
tracking technique, solution can be easily adopted for the
development of interaction devices.

VI. CONCLUSIONS

1. Orientation-position estimation approaches were
analysed based on sensor fusion and computer vision.
Hybrid tracking solution using Kalman filter was proposed
that has supplementary properties and eliminates separate
tracking technique disadvantages.
2. Orientation and position information were simulated
with probable errors that might arise in real life conditions,
caused by rapid motion, occlusions and other problems.
Hybrid tracking research estimated results were compared
with only computer vision and only sensor fusion
estimates.
3. Depending on the available information from sources,
different approaches to orientation and position estimation
problems are proposed incorporating innovation
conditions. Proposed solution improves tracking reliability
and eliminates delay in computer vision provided
orientation-position estimates.
4. Hybrid tracking technique adoption in augmented
reality is the main aspect of this research. Orientation-
position improved estimates would ensure reliable virtual
content representation into real world context with realistic
continuous view and interaction.
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