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Abstract—This paper is focused on investigating the
differences in glottal pulses estimated by two algorithms; Direct
Inverse Filtering (DIF) and Iterative and Adaptive Inverse
Filtering (IAIF) for normal and stressed speech. Individual
glottal pulses are mined from recorded speech signal and then
normalized in two dimensions. Each normalized pulse is divided
into a closing and opening phase and further segmented into
n-percentage sectors in Top-To-Bottom (TTB) amplitude
domain. Three parameters, the kurtosis, skewness and pulse
area, as well as their Closing-To-Opening phase ratios, are
analysed. Designed GMM classifier is trained on speakers from
Czech ExamStress database a further applied on other part of
ExamStress database and also for English database SUSAS to
investigate the independency of presented approach on spoken
language and speech signal quality. The results achieved by
DIF indicate independency on language and records quality
(contrary to methods using IAIF). The best n-percentage
sectors in the TTB segments can be seen between 5 % and
40 %. In this case, methods based on DIF reached a
psychological stress recognition efficiency of 88.5 % in average.
The average stress detection efficiency of methods based on
IAIF approached 73.3 %.

Index Terms—Analysis of speaker state; psychological stress
detection; glottal pulse analysis; closing-to-opening phase ratio.

I. INTRODUCTION

Current trend is to monitor the actual emotional state of
speaker by non-invasive methods like remote analysis of
speech signal mostly for the employees of risk professions,
e.g. pilots, rescuers, efc., to avoid some dangerous or
unpleasant situations. Psychological stress can be classified
as an emotion, thus the psychological state influences human
behaviour and self-confidence. Due to this reason, it is
appropriate to recognize the stress of a speaker immediately,
especially in situations when the speaker’s behaviour is
negatively influenced by distress.

Many methods of stress detection exist and are based
mostly on directly mined speech features like MFCC [1],
pitch [2], formants [3], etc. Other publications present
methods using a set of chosen features, e.g. TEO energy,
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spectral centroid, pitch range, efc. [4] or psychological stress
recognition based on plane shapes, so called vowel
polygons, created by relevant formant values [5]. The
differences in acoustics-phonetics between stressed and
normal speech are described in [6], where enhancing the
speaker’s pitch is mentioned as the most obvious audible
change in stressed speech. Psychological stress recognition
is not frequently published and observed, but other used
methods, features and databases can be partly found in
written surveys oriented on emotional speech recognition
[7], [8], or in a survey describing research methods and
further steps only for speech under stress [9].

Generally, methods of stress recognition by glottal pulse
analysis are less applied, which opens the possibilities to
uncover novel observations in this field. For example, Iliev
et al. used glottal and other features with optimum-path
forest to emotion recognition [10] as well as Muthusamy et
al. [11]. According to [12], vocal tract cavities are affected
by psychological stress which can be detected from LPCs.
Glottal analysis complemented by other speech features was
published in [13], where accuracy increases from 75 % to
92 % approximately after adding the glottal feature. Another
study [14], based only on statistical analysis of glottal pulses
using the glottal pulses’ fixation in maximum and
overlaying, presents psychological stress recognition of
88 %. Thus, techniques of emotion recognition based only
on analysis of glottal features have not been published and
presented.

Compared to previously published methods of
psychological stress recognition, the presented paper
describes an innovative method based only on glottal pulse
analysis in amplitude domain. Exactly, the main novelty of
this work is to analyse mined glottal pulses as a
two-dimensional shape or e.g. probability distribution.
The fundamental idea in this paper is also based on the
assumption that glottal flow is independent on spoken
phonemes, which leads to provide experiments of stress
recognition on real stress databases containing different
languages to prove if glottal flow analysis, and in particular
presented methods, can be successfully applied for
psychological stress recognition independently of language
and phonetic contents.
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II. MATERIAL AND METHODS

This section presents and describes the introductory steps
and options necessary for our observation of differences
between glottal pulses in stressed and normal speech. The
applied methods and glottal pulse estimation are based on
using the software tool Aparat [15].

A. Used Methods

Many ways of glottal flow estimation exist, but algorithms
based of inverse filtering techniques try to achieve the
reliable estimation of glottal source wave. In other words,
inverse filtering techniques remove the influence of vocal
tract directly from speech. Due to reason of trying to obtain
the most realistic glottal flow, estimation techniques based
on inverse filtering are used in our experiments. The glottal
pulses were estimated from the speech signal by two
common algorithms [16] — the Direct Inverse Filtration
(DIF) and the Iterative and Adaptive Inverse Filtering
(IAIF), both applied on originally captured and normalized
(NS) records at a vowels’ beginning (VB) and centre parts
(CP). Obviously, in our research, eight different methods
analysing and estimating glottal pulses were applied. Each
method is characterized individually as follows:

— Method 1 uses DIF algorithm, VB

— Method 2 uses DIF algorithm, VB, NS

— Method 3 uses IAIF algorithm, VB

— Method 4 uses [AIF algorithm, VB, NS

— Method 5 uses DIF algorithm, CP

— Method 6 uses DIF algorithm, CP, NS

— Method 7 uses IAIF algorithm, CP

— Method 8 uses IAIF algorithm, CP, NS

According to obvious differences between the used
methods, the final comparison should uncover their
suitability and efficiency for detecting psychological stress.

B. Used Database

Two different databases were used in the presented
experiments. Firstly, 12 male Czech native speakers were
randomly selected from the previously created database
ExamStress [17] where the same speech is recorded during
the final oral exams (stress influence) and a few days later
(normal state) for each speaker. Due to this reason, the
differences between normal state and real psychological
stress can be observed.

Secondly, the SUSAS [18] database was used for
validating the psychological stress detection efficiency on
the English language and bad quality captured records
containing high noise levels, voice distortion and signal
clipping. Specifically, the part containing real psychological
stress captured by 2 apache pilots almost out of fuel was
used in the presented experiments.

C. Used Glottal Pulse Features

Differences between stressed and normal speech were
observed and further classified by a vector of three glottal
pulse features. In the first step, each mined glottal pulse is
amplitude and length normalized to maximum values of 1
due to bringing the global pulse size into accord. Then, each
normalized glottal pulse is divided into a series of pulse
segments from the peak to n-percentage amplitude level
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which is shifted step by step along the amplitude axis. The
0 % level is at the top of glottal pulse, and the 100 % value
lies at its bottom (see Fig. 1). Due to this fact, the used
glottal pulse segmentation is called Top-To-Bottom (TTB).

The selected n-percentage pulse segment is further
analysed in the time domain taking into consideration the
opening and closing phase. Kurtosis a, skewness f and area
y are calculated for each wave part corresponding to 7, , and
T. p. Then, the Closing-To-Opening phase ratio (CTO) is
calculated for each obtained parameter

I._p(m)

CTO ()= (n),
o_p

(1)

where 7 is the actual n-percentage level, p substitutes one of
the analysed parameters (i.e. skewness, kurtosis, area,
respectively), 7. , is the current closing phase value and T5 ,
is the current opening phase value. Figure 2 shows the most
illustrative example of glottal pulses in /u/ vowels’ beginning
estimated by the DIF algorithm for both states of one
speaker. Here, given values of CTOs were averaged from 39
pulses.

Opening phase . _ Closing phase -

Tep

A

Relative amplitude [%l]

100

>
'

Time
Fig. 1. An example of glottal pulse n-percentage division where the
selected closing phase is illustrated by dark grey and the opening phase is
represented by a light grey colour. The thick line marks the chosen curve
part of the glottal pulse.

A similar CTO has been applied in previous research
oriented on percentage segmentation of glottal pulses along
the time axis [19]. In this case, Gaussian Mixture Models
(GMM) were evaluated as the most appropriate feature
processing approach under six different classifiers.

III. EXPERIMENTAL RESULTS

This section describes realized experiments and achieved
results. In the training process, 5 Czech vowels were spoken
few times separately and automatically found [20] in
recorded speech from 6 speakers in the ExamStress database
to obtain reference CTO values in the vowels’ beginning and
center part by its averaging for all vowels. This fact means
that for each speaker and each vowel there are 3 reference
CTO values stored, leading to 90 reference values totally for
each state of speaker and used method. These reference
values are further used for training the GMM classifier. In
the presented experiments, the GMM classifier standardly
embedded in the Matlab environment is used and further is
fitted on previously described reference values as a
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two-component Gaussian Mixture Model. Then, the binary
decision (stress/no stress) is based on the higher probability
reached for each state of fitted GMM to the investigated
data. The flow chart of the algorithm used in our
experiments is illustrated in Fig. 3.

Normal
CT0,(30)=0.39

CT0,(30)=0.54
CTO, (30)=1.93

Relative Amplitude [%0]

Relative Duration |-] 1

Psychological stress

CT0,(30)=0.62
CTO,(30)=0.63
CTO,(30)=2.53

Relative Amplitude [%]

Relative Duration |-|

Fig. 2. An example of pulse differences varying on the speaker’s state in
glottal pulses estimated by DIF in /u/vowels’ beginning for speaker 1 from
the ExamStress database and 30 % selected interval with average C70s.
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Fig. 3. The flow chart of the used psychological stress recognition
algorithm.

In our experiments, the investigated data, i.e. observed
glottal pulses, were automatically extracted from fluent
speech, exactly over all spoken phonemes, by using the
flowing rectangular window of duration 300 ms with 50 %
overlapping. Then, the estimated glottal pulses were
normalized in two dimensions and were filtered for
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removing the parasitic pulses.

Investigated speech data was automatically achieved for
all voiced parts of speech. The second group of 6
ExamStress speakers was used for testing the designed
classifier. Due to the records having high quality and their
length, approximately 1500 glottal pulses were analysed and
classified for each speaker.

For investigating the language-independency of the
presented methods, the SUSAS database was used.
Compared to the ExamStress database, the low quality
(e.g. voice distortion, clipping, loud background noise, efc.)
of these records rapidly decreases the total number of
estimated glottal pulses. It has been observed experimentally
that processing only short parts (50 ms) of SUSAS records
leads to satisfactory glottal pulse mining. Other lengths of
analysed speech signals lead to estimating glottal pulses
which do not match the Liljencrants-Fant model [21]. All
mined glottal pulses were filtered automatically, because
incorrectly estimated glottal pulses occurred even for an
analysed signal with short lengths. For each speaker in
SUSAS, approximately 130 glottal pulses were received
correctly and further wused irrespectively of sound
normalization and the vowels’ parts for psychological stress
detection.

The reached efficiency results using Method 1 and
Method 2 are listed in Table I, where a few facts are evident.
Sound normalization causes a decrease of psychological
stress detection applied on the ExamStress database, but
generally achieved efficiency is high and more than
satisfactory. Contrary to previous statements, results
achieved for the SUSAS database are high and more or less
constant over the entire chosen n-percentage intervals for
both methods which leads to much higher efficiency
achieved than by using Method 2. These observations can
lead to the statement that low quality records are less prone
to sound normalization of testing sequences.

Table II shows the efficiency obtained by psychological
stress detection based on the TAIF estimation algorithm and
vowels’ beginning (Method 3 and Method 4).

By comparing the results reached using the ExamStress
database, the negative influence of sound normalization can
be seen by a significant decrease of efficiency over all the
observed n-percentage intervals. This effect is not that
evident for the SUSAS database where almost all
efficiencies are lower than its ExamStress equivalent (except
the 80 % and 100 % level for Method 3 as well as 15 % and
55 % level for Method 4, achieving a stress detection
efficiency of 95 %).

Obviously, psychological stress detection based on the
IAIF estimation algorithm applied on the vowels’ beginning
is not appropriate on low quality records.

Further, the recognition efficiency was calculated for
methods based on the vowels’ centre part.

For DIF based methods (Method 5 and Method 6) and the
ExamStress database, efficiency is more or less similar (over
90 %). However, for n percentage intervals higher than
50 %, efficiency slightly decreases to a value of 77 %. By
applying Method 5 and Method 6 on the SUSAS database,
similar efficiency is reached as for the ExamStress database
and achieves high values almost over all the n-percentage
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intervals. Some exceptions can be found in the 45 %, 65 %
and 80 % intervals, where both methods obtained poor and
unsatisfactory efficiency.

TABLE I. THE EFFICIENCY OF PSYCHOLOGICAL STRESS
DETECTION REACHED BY METHOD 1 AND METHOD 2.

Efficiency [%]
n [%] Method 1 Method 2
ExamStress SUSAS ExamStress SUSAS

5 94.8 95.0 85.8 95.0
10 95.0 95.0 27.0 95.0
15 94.1 95.0 95.0 95.0
20 95.0 95.0 49.9 95.0
25 94.8 94.8 34.6 94.6
30 94.3 86.7 85.9 94.1
35 94.0 94.6 84.6 95.0
40 85.8 95.0 58.3 94.8
45 92.5 95.0 82.8 95.0
50 79.6 94.7 82.4 94.7
55 84.5 95.0 49.5 94.7
60 90.3 94.9 82.9 95.0
65 83.9 90.2 70.8 94.5
70 83.4 95.0 83.2 95.0
75 83.1 94.9 95.0 95.0
80 82.8 90.6 82.5 92.2
85 82.4 85.6 80.9 72.2
90 81.6 95.0 80.1 90.6
95 82.8 82.8 80.1 51.1
100 82.4 94.7 79.4 82.8

According to the made observations, the DIF glottal pulse
estimation algorithm has been found to also be appropriate
for psychological detection. The effect of sound
normalization on stress recognition can also be classified as
minimal as well as the effect of low quality records and
spoken language captured on analysed records.

TABLE II. STRESS DETECTION EFFICIENCY REACHED BY
METHOD 3 AND METHOD 4.

Efficiency |%]
n [%] Method 1 Method 2
ExamStress SUSAS ExamStress SUSAS

5 75.0 63.9 94.8 64.6
10 92.5 60.5 94.7 60.5
15 95.0 63.3 89.4 95.0
20 93.9 59.2 94.7 51.0
25 93.1 65.9 74.6 68.7
30 91.9 67.3 74.2 46.3
35 91.4 52.4 74.0 63.9
40 40.7 66.7 73.6 59.2
45 90.6 65.9 73.4 68.0
50 90.2 68.7 72.8 68.7
55 89.3 69.4 27.3 95.0
60 88.4 58.5 71.6 68.0
65 40.9 70.7 70.1 59.2
70 86.1 74.1 94.5 72.1
75 94.8 76.9 69.1 75.5
80 95.0 95.0 94.6 74.8
85 95.0 79.6 67.6 80.9
90 81.9 53.6 50.9 78.9
95 81.6 82.3 81.3 52.4
100 94.7 95.0 83.9 83.7

Psychological stress detection efficiency results obtained
by the IAIF estimation based on the vowels’ centre part are
described in the following text and are equivalent to the
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previously mentioned Table II.

As in previous cases (see Table I and Table II) for the
ExamStress database, the IAIF estimation algorithm reaches
generally lower recognition efficiency than the DIF
algorithm, but it still gives satisfactory results almost on all
n-percentage intervals. Applying Method 7 and Method 8 on
the SUSAS database, the recognition efficiency generally
sharply decreases by 20 % on average, except for 4
n-percentage intervals where it reaches much higher values
than for the ExamStress database.

Apparently, as in the previous case, the IAIF algorithm is
sensitive to analysed records quality, and in some cases also
on spoken language. Methods based on the IAIF algorithm
applied on the vowels’ beginning are more suitable for
psychological stress detection than Method 7 and Method 8.

IV. EFFICIENCY EVALUATION

To summarize the results listed in the previous section, it
is necessary to make a final evaluation of the used methods
and n-percentage intervals. Firstly, evaluating all
investigated n-percentage intervals is appropriate for finding
the most consecutive glottal pulse parts where the highest
differences between normal and stressed speech occur.
Table III lists average efficiency values ¢ reached for each
n-percentage interval for all used methods and databases.

TABLE IIl. AVERAGE EFFICIENCY VALUE FOR ALL 8§ METHODS

AND BOTH DATABASES.
n [%l] 5 10 15 20 25 30 35
£ [%] 83.2 81.8 84.4 71.5 78.4 81.9 | 82.6
n [%l] 40 45 50 55 60 65 70
£ [%] 77.6 74.2 80.9 80.8 83.2 69.1 | 82.5
n [%l] 75 80 85 90 95 100
£ [%] 85.1 78.4 79.1 73.5 74.4 80.9

Obviously, the band of the best n-percentage TTB
amplitude intervals lies between 5 % and 40 % where
average efficiency ¢ reaches consequently higher values than
77.5 %. Table IV lists average efficiency ¢ values for each
used method for both databases and all n-percentage
intervals in the range from 5 to 40 % with a step of 5 %. As
can be seen, the efficiency value depends on used methods,
exactly on different vowel parts performed for training the
classifier.

TABLE IV. AVERAGE EFFICIENCY VALUE FOR ALL 8 METHODS

AND BOTH DATABASES.
Method

n 5 o 5 . ¥ DIF

1% 937 L 80.0 91.9 L 88.6 655
Method

3 y o . . X IAIF

1% 733 L 737 69.4 L 77.0 13

Results listed in Table IV show that not so significant
positive impact exists on reached & over n-percentage
intervals in the case of sound normalization. Obviously,
similar & results are achieved by similar glottal pulse
estimation methods trained only on a varying vowel part.
Finally, the highest average efficiency on the observed
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n-percentage intervals are reached by using the DIF
estimation method (88.5 %) which achieved higher ¢ by a
significant 15.2 % compared to the IAIF estimation
algorithm (73.3 %).

V. CONCLUSIONS

According to all achieved results, it can be concluded that
the DIF based methods give better stress detection, glottal
pulse normalization is sensitive to the sound quality, and the
vowel’s part used for classifier training does not have a
significant effect on recognition efficiency. The usage of the
presented algorithms of glottal pulse processing estimated by
DIF and applied on TTB n-percentage intervals from 5 % to
40 % can lead to high efficient psychological stress
recognition in speech. Obviously by achieved high values of
recognition efficiency (in some cases approaching 95 %), the
presented technique could be classified as possibly text and
language independent which can lead to further analysis of
glottal flow in more detail to deploy it into real applications.

Nevertheless, in future work, it is necessary to verify the
achieved results on other languages and expand the speaker
database.
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