
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

1Abstract—A novel outbound unsolicited electronic mail
prevention solution is presented, which can be used in shared
web hosting environments. It combines several new ideas,
including the rate of non-existent recipient email addresses, the
content of the file which called the mail function and automatic
actions after detection of suspicious activity to isolate and block
it. A complete solution was designed and implemented, all the
algorithms were described and presented in the article. The
evaluation was done by testing the efficiency of outbound
unsolicited electronic mail detection and the number of
incidents blocked.

Index Terms—Electronic mail; message systems; unsolicited
electronic mail.

I. INTRODUCTION

Even in 2015, unsolicited electronic mail, also known as
SPAM, not just continues to plague businesses and users, but
also accounts for a noticeable amount of traffic in global
networks. According to an international software security
group Kaspersky Lab [1], in Q2 2015, the proportion of
spam in email traffic was 53.4 %.

A variety of different methods exist to send unsolicited
electronic mail, however, one of the most popular ways is
sending SPAM through existing vulnerable websites on web
hosting servers. The reason behind this trend is the fact that
86 % of all websites have at least one serious vulnerability
[2]. The report by WhiteHat Security also notes that most of
the time the sites contain more than just a single
vulnerability. A provider of cyber and data security products
Imperva confirms WhiteHat indications in “Web Apllication
Attack Report #5” [3] and additionally notes the increase of
24 % in Remote File Inclusion (RFI) attacks and WordPress
as the most common target for Content Management System
(CMS) attacks.

Today’s world is mostly concentrated on incoming spam
filtering solutions like the most popular open source solution
SpamAssassin [4], greylisting, blacklists, SMTP-time
filtering and research on spam filters. Even though they help
lowering the amount of received spam in customer’s
mailboxes, not all of the messages are successfully identified
as spam. Moreover, it does not change the amount of spam
in global networks.

Manuscript received 21 December, 2015; accepted 30 May, 2016.

To filter spam, major email service providers check SPF
[5] and DKIM [6] records [7], but that does not help if spam
is sent from a PHP script in a web hosting account,
configured with correct SPF and DKIM records. That is why
attackers send SPAM from infected websites.

To lower the amount of spam in global networks and
consequences caused, outbound spam prevention solutions
must be used. In addition to, using outbound SPAM
prevention provides other benefits for shared web hosting
providers, including non-blacklisted IP addresses, good
server reputation, less emails in mail queue, resulting in
better quality of services for the end customer. Data centers
usually have strict Terms of Service (ToS) for spam and take
serious actions when they detect outbound spam from their
network to save the reputation of their entire network.
Actions may include null routing of the client’s IP addresses
[8] if outbound spam from the servers is detected, resulting
in no availability of other services like HTTP, FTP or DNS,
or a block for SMTP port 25 [9], resulting in no availability
of SMTP service, which prevents delivery of normal email
messages from shared web hosting servers.

II. TECHNIQUES TO PREVENT OUTBOUND SPAM

One of the most popular technique to prevent outbound
spam on shared web hosting servers is rate limiting, offered
by two of the most popular web hosting control panels
cPanel [10] and Plesk [11]. The technique limits the number
of email messages that could be sent in a particular amount
of time for a specific email address or domain. It is effective
with strict limits set, but has several disadvantages. Firstly, if
a customer reaches the email rate limit set without sending
any spam messages, all the additional outgoing messages
will fail and the customer will be blocked from sending more
mails for a particular amount of time. Secondly, when the
period of time expires for the limit, the customer is able to
send the same amount of messages again, including the spam
messages. For example, if the rate limit is set to 50 messages
per hour, when the hour limit expires, the customer can send
another 50 messages. Thirdly, even if administrators are
notified about customers who reached the limit, they do not
indicate if that was a spam incident or not, and requires
system administrators to review the incident manually.

Another approach offered by cPanel is outbound mail

Prevention of Outbound Unsolicited Electronic
Mail

Martynas Bendorius1, Ingrida Lagzdinyte-Budnike1, Kestutis Paulikas1, Aurelijus Budnikas2

1Department of Applied Informatics, Kaunas University of Technology,
Studentu St. 50–402a, LT-51368 Kaunas, Lithuania

2Department of Telecommunications, Kaunas University of Technology,
Studentu St. 50–424, LT-51368 Kaunas, Lithuania

ingrida.lagzdinyte@ktu.lt

http://dx.doi.org/10.5755/j01.eie.22.4.15921

63



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

filtering using Apache SpamAssassin [12], however due to
high resource usage, many false positives and insufficient
protection they do not suggest using it on production servers.

III. PROPOSED SOLUTION

Considering the experience in shared web hosting sphere
and knowing most common ways used to send unsolicited
electronic mail, we are offering a complete solution which
automatically detects and blocks the attack. Our goal is to
block email delivery from infected websites. The solution
consists of several separate ideas: A) limiting the number of
message submits to nonexistent email addresses per hour, B)
analyzing the PHP scripts which were used to send mails.
Both of the solutions ensure blocking further attempts to
send mail from affected accounts or scripts directly in MTA.

A. Rate Limiting of Attempts to Send Emails to Nonexistent
Mail Addresses

Attackers usually use a large list of email addresses
having a number of email addresses which never existed or
do not exist anymore. The idea of rate limiting of attempts to
send emails to nonexistent recipient email addresses is not
new, it has been discussed on the Internet in 2010 by
Andrew Hearn, CEO of Andrews & Arnold Ltd, providing
email services for the masses, and some other places.
However, they focus on authenticated SMTP users, and no
complete solution was found for emails sent from PHP
scripts on shared web hosting environments.

Our proposed solution allows to set custom rate limiting
period and the number of nonexistent recipients, that way
shared web hosting companies can tune the settings up for
them to be stricter or more tolerant. In our further
experiments the default limit was set to delivery of 100
emails to nonexistent email addresses in 1 hour until the
delivery from a specific path gets blocked. The default limit
was set to 100, because from various tests we have got some
false-positives with a lower number, mainly from electronic
shops having fake registrations for newsletters.

When the limit is reached, the full script execution path is
added to the list of denied paths file automatically, the end-
user (legal shared web hosting account owner) and system
administrators get notified about the incident. Without a
manual action from administrators or the end customers it is
not possible to unlock the path, so attackers cannot send
more emails even when the rate limiting period (1 hour)
ends.

Recipient verification is based on SMTP callback
verification offered by Mail Transfer Agents (MTA) [13]. In
our case Exim was used as an MTA. To verify a sender
address it connects to a remote SMTP server (set in DNS
MX records), executes a standard HELO command required
by the protocol, submits an empty MAIL FROM field and
fills the RCPT TO field with the address to be tested, then it
quits with a QUIT command. The remote server response to
the RCPT command is a 2xx code meaning that verification
succeeded, or a 5xx code, which means that verification
failed. For any other condition the next host set in DNS MX
records is tried (if there are set any). A successful callback
does not guarantee a successful delivery, but a failing callout
guarantees that delivery would fail. To save the resource

usage by address verification, Exim caches the result of
callbacks. The solution is represented in Fig. 1.

Fig. 1. Rate limiting solution for non-existent mails scheme.

The proposed solution uses a time limit of 10 seconds for
a timeout and a defer_ok setting [14], which makes the
check to treat a failure of contacting any host or any other
kind of temporary problem as success by the ACL. The
structure of the callback (also known as callout) is
represented in Fig. 2.

Fig. 2. SMTP callback scheme with a correct recipient.

As seen in Fig. 2., the response in bold after RPCT TO
command returned 2xx code, meaning a verification success.
The proposed solution only counts the email addresses that
return code 5xx, meaning a verification failure.

B. Identification of Malicious PHP Scripts
The previously described solution reflects only a part of

the complete solution. Even though the previous solution
stops many of the spam attempts, it still can be
complemented. Attackers still have a way to send up to 100
unsolicited electronic mails from a directory on the system.

To reduce the number of mails sent a PHP code analysis
of scripts which used the mail() function can be done. By
analyzing spam scripts on a shared web hosting server, it
was noted that most of the infected scripts use an encoded
PHP code inside. In such case a base64_decode() PHP
function is called to decode the code and eval() PHP
language construct is used to execute the code. 5264 virtual

64



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

hosts on different dedicated servers were scanned to see if
there are any occurrences of mail(), base64_decode() and
eval() usage in the same PHP script and it was found that
none of normal PHP scripts had this combination used in a
single PHP file.

Despite the fact PHP allows simply disabling PHP
functions in PHP configuration file, base64_decode() and
eval() are used in normal scripts too, so they could not be
simply disabled, because that could break a number PHP
applications on shared web hosting servers. In addition to,
eval() is a language construct, so it is not possible to disable
it in disable_functions PHP configuration setting.

To effectively detect scripts having eval() and
base64_decode() in the same file, which was used to send
mails using mail(), log scanning must be used. The reason
behind that – the files are encoded using base64_encode()
and that allows attackers to hide a mail() function call in
their PHP scripts. However, PHP offers live logging setting
for the usage mail() function [15], and this feature allows us
to know which PHP script called the mail() function, then it
can be simply scanned for the usage of base64_encode()
function and eval() language construct. We cannot simply
say that a PHP script, which has it’s source code encoded
and mail() function hidden, is a malicious script, because it
is possible to encode PHP source code using ionCube or
Zend encoders, and they help commercial solutions to
legally hide their PHP source code.

Our proposed solution uses an application named
Swatchdog (Simple Log Watcher) [16] to scan the logs in
real time and parse the scripts having the mail() calls. If the
file is detected to have base64_decode() and eval() inside,
it’s added to the list of denied paths and administrators
together with the end-user are notified as shown in Fig. 3.

Fig. 3. PHP code analysis scheme.

As seen in Fig. 3, when PHP mail() function call happens,
it instantly logs the usage of the function and submits the
mail to MTA at the same time. This is the main reason why
we cannot technically stop the first mail from being sent,
because MTA and Swatchdog work independently from
each other. However, Swatchdog checks the log in real time
and passes the full path to the script, which analyses PHP
code. If the script detects eval() and base64_decode()
function in the script, which was used to sent the mail, it

adds the path to the list of paths that are not allowed to send
any mails from the system. The second try to send a mail
using PHP will fail, because MTA will detect that the path is
not allowed to send the mail and will refuses to deliver it.

When the automatic detection and blocking of spam
delivery was started, a few more patterns used to hide PHP
files were found and added to automatic blocking script:
 More than 10 occurrences of variable GLOBALS,
eval() function called in the same file, mail() function
hidden;
 GLOBALS, substr, return used on the same line, mail()
function hidden;
 More than 10 occurrences of chr() function, eval()
function called in the same file, mail() function hidden.
Even though the regular expression list for detection of

malicious PHP scripts detected all the files that were used to
send unsolicited electronic mail, we are sure that more
patterns exist and even more ways to hide PHP code will be
created in the future. The main drawback of this method is
the need to constantly update the static list of regular
expressions for the detection of malicious PHP scripts that
are used to send spam.

Most of the time content management systems (CMS)
have folders that are used for user-level file uploads. These
folders are a common target for unrestricted file upload
attacks [17]. To partially solve the main drawback of the
method mentioned above, a global blocked script paths file
can be used. That way MTA would check if the path from
which the mails are sent has no matches in the regular
expression list of paths. If a match is detected, delivery
would be blocked. For example, it would be safe to block
email sends with the following regular expressions for
WordPress CMS:
 ^.*/wp-content/cache.*
 ^.*/wp-content/uploads.*

IV. EVALUATION

To evaluate the solution, both of the spam prevention
solutions were tested separately.

Our qualitative characteristics for evaluation criteria were:
 detection of malicious attempts to send spam;
 number of false-positive detections.
The rate limiting of sends to non-existent email addresses

solution was installed to a random production server having
688 shared web hosting accounts and 1801 domains setup on
it. The solution was installed and left for a week to run. Then
a file having the list of blocked paths was checked to see
when and what was blocked.

In a period of 7 days, 10 attempts to send spam were
blocked from 3 different web hosting accounts. That
accounts for 0.44 % of all the customers. The results are
shown in Table I. From the directory names seen in directory
column we can see that malicious files are usually placed
deeply in subdirectories, so that it would be harder to detect
them for the end-customer. In addition to, the name of the
infected files is usually set to confuse the end-customers too,
because file names like css.php or blog.php do not look
strange, and it could be believed that the files are provided
by the content management system or it’s plugins. The date

65



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

shown in the table indicates when the spam attempt was
detected and blocked, to evaluate the quantity of scripts
blocked in a period of time. Real domain names were
changed in the table for confidentiality purposes.

TABLE I. LIST OF BLOCKED PATHS.
Directory Date Infected file

/home/gertex/domains/secretdomain.pl/publ
ic_html/wp-content/uploads/wow-slider-

plugin/9/tooltips

02 Nov
2015
12:08

css.php

/home/gertex/domains/secretdomain.pl/publ
ic_html//produkty

03 Nov
2015
03:46

blog.php

/home/technogrf/domains/secretdomain2.pl
//public_html/wp-includes/pomo

03 Nov
2015
04:30

plugin74.php

/home/technogrf/domains/secretdomain2.pl
//public_html/wp-includes/js/swfupload

03 Nov
2015
23:29

ini.php

/home/technogrf/domains/secretdomain2.pl
//public_html/wp-admin/images

04 Nov
2015
20:34

global76.php

/home/gertex/domains/secretdomain.pl/
/public_html/wp-includes/js/mediaelement

05 Nov
2015
01:15

page26.php

/home/gertex/domains/secretdomain.pl/publ
ic_html//wp-content/uploads/2015/04

06 Nov
2015
08:09

test.php

/home/champion/domains/secretdomain3.pl
/public_html/zarzadzanie

06 Nov
2015
14:42

error65.php

/home/gertex/domains/secretdomain.pl/
/public_html/cgi-bin

07 Nov
2015
03:31

error94.php

/home/technogrf/domains/secretdomain2.pl
//public_html/wp-

content/plugins/ubermenu/standard/styles

07 Nov
2015
06:19

help15.php

All of the blocked paths had malicious content inside and
there were no false positives. That indicates that the
protection works and that the threshold of 100 sends to non-
existent emails per-hour could be lowered to catch more
spam attempts. 1 attempt to spam of 11 (9.1 %) used no
base64_decode() and eval() in their PHP code. Even though
it is a low amount, it is usually enough for the server to get
blacklisted and for the actions to be taken from the data
center (null route the IP address or block SMTP port). The
fact confirms that there is a need of a complete combined
solution, which detects both the usage of malicious PHP
scripts and rate limit of sends to non-existent email
addresses.

The identification of malicious PHP scripts method was
tested on a separate server to get the efficiency results
without any influence from the previous detection method.
The server had 359 active shared webhosting accounts
owning 1469 domains. Test results were also taken from a
time period of a week. It was found that the spam affected 3
different customers and the spam attack was blocked. That
accounts for 0.84 % of all the customers on the server. The
results from blocked paths file are shown in Table II.

TABLE II. LIST OF BLOCKED PATHS.
Directory Date Infected file

/home/tagmaler/domains/secretdomain2.dk/
/public_html/wp-

content/plugins/codestyling-localization

02 Nov
2015
15:19

ini.php

/home/vokalind/domains/secretdomain.dk/
/public_html/wp-

03 Nov
2015 help.php

Directory Date Infected file
content/themes/enfold/config-

layerslider/LayerSlider/img
08:37

/home/vokalind/domains/secretdomain.dk/
/public_html/wp-

content/themes/twentythirteen/inc

03 Nov
2015
18:24

code25.php

/home/bedsteci/domains/secretdomain.info/
/public_html/libraries/joomla/session

04 Nov
2015
22:13

default.php

The identification of malicious PHP scripts method,
which complements the first method of rate limiting sends to
non-existent email accounts, also had no false positives and
malicious scripts were found in all the paths reported.

Administrators and end-customers were successfully
informed about the attempts to send unsolicited electronic
mails from affected websites. Instructions for unblocking the
path were also provided. One of the notifications is shown in
Fig. 4. It is beneficial to inform the end-customer about the
incident and allow them to unblock themselves, because they
can clean their websites up by themselves, upgrade their
content management system and plugins used with it,
without any actions done from system administrators. In very
rare cases it could be the customers themselves responsible
for the spam, however, such cases can be quickly identified,
because administrators would repeatedly receive messages
from the system about the spam originating from the
customer.

Fig. 4. Notification about suspicious activity under account.

The efficiency of our proposed solution was also
compared with rate limiting – the most widely used
outbound unsolicited mail prevention method. Comparison
was done by setting the rate limit to 10 emails/minute and
checking the efficiency of every method by sending different
amount of emails every minute. We randomly added 1/3
non-existent email addresses to the list of recipients. The
results are seen in Fig. 5.

As seen in Fig. 5 above, rate limit method has the
advantage of preventing the outbound spam when it is sent
from unrecognized PHP script and the amount of spam

66



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

messages is low. That way the threshold of non-existent
email addresses per hour in our proposed solution is not
reached. In all the other cases our proposed solution behaved
equally or better than the rate limit method.

0

10

20

30

40

50

60

70

80

90

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251

sent (prop, 60/min) sent (rlim, 60/min)
sent (prop,30/min) sent (rlim, 30/min)
sent (prop, 20/min) sent (rlim, 20/min)

number
of emails

time,
sec

Fig. 5. Comparison of proposed solution and rate limit method.

V. CONCLUSIONS

Unsolicited electronic mail is still an actual world-wide
problem, having a proportion of 53.4 % in global email
traffic. With a growth of the number of unsolicited electronic
mails from infected websites, there is an urgent need to
replace a widely used rate limiting solution, which simply
describes how many emails can be sent in a particular
amount of time, because of the problems faced by shared
web hosting end-customers.

In this work a novel solution to identify and prevent
outbound spam was offered, which ensures more modern
protection. A complete solution was created and used for the
evaluation of the product on production servers with a
success.

Experimental results have shown no false-positive reports
and an accurate detection of malicious scripts used to send
unsolicited electronic mails in shared web hosting servers.
Even though the solution successfully blocked spam
attempts and prevented the servers of getting blacklisted,
that indicates that stricter rate limits for email sends to non-
existent email addresses could be chosen, according to the

environment. In addition to, it might be worth combining
conservative rate-limit method with the proposed solution to
prevent even more outbound unsolicited mail in situations
with unrecognized PHP scripts and high-quality spam lists
with minority of non-existent email addresses.

REFERENCES

[1] Kaspersky Lab, “Spam and phishing in Q2 2015”. [Online].
Available: https://securelist.com/analysis/quarterly-spam-reports/
71759/ spam-and-phishing-in-q2-of-2015/

[2] WhiteHat, “Website security statistics report”. [Online]. Available:
https://www.whitehatsec.com/statistics-report/featured/2015/05/21/
statsreport.html

[3] Imperva, “Web application attack report #5”. [Online]. Available:
http://www.imperva.com/docs/hii_web_application_attack_report_ed
5.pdf

[4] Apache Software Foundation, “What Apache SpamAssassin is”.
[Online]. Available: http://svn.apache.org/repos/asf/spamassassin/
branches/3.4/README

[5] SPF Council, “What is SPF”. [Online]. Available:
http://www.openspf.org/FAQ/What_is_SPF

[6] D. Crocker, “DKIM frequently asked questions”. [Online]. Available:
http://www.dkim.org/info/dkim-faq.html

[7] Google, “Authenticate email with DKIM”. [Online]. Available:
https://support.google.com/a/answer/174124?hl=en

[8] Hetzner, “Terms and conditions”. [Online]. Available:
https://www.hetzner.de/es/hosting/legal/agb

[9] OVH, “Specific Terms and Conditions on the rental of a dedicated
server”. [Online]. Available: https://www.ovh.com/us/support/
termsofservice/Special_conditions_for_dedicated_server.pdf

[10] cPanel Inc., “How to prevent email abuse”. [Online]. Available:
https://documentation.cpanel.net/display/CKB/How+to+Prevent+Em
ail+Abuse

[11] Parallels Inc., “Protection from outbound spam”. [Online]. Available:
http://download1.parallels.com/Plesk/Doc/en-US/online/ plesk-
administrator-guide/index.htm?fileName=71349.htm

[12] cPanel Inc., “Scan outgoing mail”. [Online]. Available:
https://documentation.cpanel.net/display/ALD/Scan+Outgoing+Mail

[13] University of Cambridge, “Exim callout verification”. [Online].
Available: http://www.exim.org/exim-html-current/doc/html/
spec_html/ch-access_control_lists.html#SECTcallver

[14] University of Cambridge, “Exim additional parameters for callouts”.
[Online]. Available: http://www.exim.org/exim-html-current/
doc/html/spec_html/ch-access_control_lists.html#CALLaddparcall

[15] The PHP Group, “Runtime configuration”. [Online]. Available:
http://php.net/manual/en/mail.configuration.php

[16] Todd Atkins, “Simple Log Watcher”. [Online]. Available:
http://sourceforge.net/projects/swatch/

[17] The Sans Institute, “Web application file upload vulnerabilities”.
[Online]. Available: https://www.sans.org/reading-room/whitepapers
/testing/web-application-file-upload-vulnerabilities-36487

67




