http://dx.doi.org/10.5755/j01.e1e.22.2.12177

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

A Novel Approach to Determine Software
Security Level using Bayes Classifier via Static
Code Metrics

Guncel Sarmman', Ecir Ugur Kucuksille?
'Computing & Information Services Office, Mugla Sitki Kocman University,
48000, Mugla, Turkey
?Computer Engineering, Engineering Faculty, Suleyman Demirel University,
32100, Isparta, Turkey
guncelsariman@mu.edu.tr

Abstract—Technological developments are increasing day
by day and software products are growing in an uncontrolled
way. This leads to the development of applications which do
not comply with principles of design. Software which has not
passed security testing may put the end user into danger.
During the processes of error detection and verification of
developed software, static and dynamic analysis may be used.
Static code analysis provides analysis in different categories
while coding without code compile. Source code metrics are
also within these categories. Code metrics evaluate software
quality, level of risk, and interchangeability by analysing
software based on those metrics. In this study, we will describe
our web-based application which is developed to determine the
level of security in software. In this scope, software's metric
calculation method will be explained. The scoring system we
used to determine the security level calculation will be
explained, taking into account metric thresholds that are
acceptable in the literature. Bayes Classifier Method,
distinguishing risks in the project files with the analysis of
uploaded sample software files, will be described. Finally,
objectives of this analysis method and planned activities will be
explained.

Index Terms—Software metrics; software safety; Bayes
methods; information security; vulnerability prediction.

1. INTRODUCTION

Important number of lines of code in a software
development process significantly affects maintenance and
sustainability of a project. In a code developing process,
carelessness and incorrect coding can make software
unusable. Software developers aim to develop code quickly
and easily in order to release more products, but there is an
important dimension that they forget to take into
consideration; security of their application and code of
developed software. For this reason, developed software
should also be secure with desired requirements. There may
be significant differences between the cost of an error
detected in the early stages of a development process and
the cost of an error detected on a system which is delivered
to a customer. Thus, security analysis is very important to

Manuscript received 4 May, 2015; accepted 28 March, 2016.

This research was funded by (No. 3888-D1-14) Scientific Research
Project Office in Suleyman Demirel University. This research was
performed in coperation with the Institution.

73

find possible errors in the development stage as early as
possible. According to the Privacy Rights Clearinghouse
which holds records of information for security breaches,
there have been at least 226 million IT security breaches
since 2005. Taking into consideration that many security
breaches remain unreported, this statistic reveals the gravity
of the situation. Gartner, a technology research and advisory
firm, has revealed that its research associated with IT
security breaches is 80 % due to software security problems
[1]. Web based software can also be broadly classified based
on the need for security. Many of the new sites have low
security needs as every user browses the same set of pages
and there is no need for having security built in. But when it
comes to e-commerce sites where purchasing and payment
features are added to the application, the highest security
must be enforced [2].

Security analysis of software is divided into two
categories including dynamic and static analysis. Static
methods which rely on the analysis of source codes and
dynamic ones which analysers, statistical approaches, and
stack defence etc., use for program audit. Static analysis is
preferred before a developed software is put into the service
and compiling process [3]. Before running, software is
analysed by static analysis and required precautions are
taken according to the results of the analysis.

Today, static analysis, which can be done through review
as well, is automated with code analysis tools that come to a
particular maturity thanks to suitable timing and economic
costs. Many errors such as run-time errors, source and
security leaks can be found with static analysis. Static code
analysis can calculate code metrics by giving a certain
number. Implementation of coding standard is quite useful
for developers in order to develop programs and to facilitate
the maintenance. Another feature of static code analysis is to
help understanding of source code architecture by
calculating the dependencies between functions, classes, and
files. Static code analysis can be applied to a project at every
stage of development as static code analysis does not require
execution of software. Static code analysis can be analysed
in different categories such as Type Checking, Style
Checking, Program Understanding, Bug Finding, Security
Review, and Code Metrics.

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

Software metrics is a method to examine source code of
software and to rate the software according to various
dimensions. The purpose of using metrics is to identify
quality of software and components like class and risk
function. Software developers and administrators make use
of code-based metrics for different purposes. Examples of
these are estimations at system level, early identification of
problematic components in terms of security, development
of secure design and programming instructions [3], [4].
Metrics can be analysed at the class and method level.

In this study, a web based software was developed in
order to determine the level of security of software and its
components using the Bayesian classifier. As a result of the
calculations made according to metrics thresholds,
components which contain risk are corrected by determining
risky and secure classes and projects with a classification
method. In this study, object oriented software metrics have
been used to measure security level. Prediction method has
been developed using Bayes Classifier while defining
security level. This study will serve as a contribution to new
researches by giving the information on using machine
learning algorithms in security. In Section II of this study,
the literature review which examines static code analysis
and code metrics is summarized. In Section III, static code
analysis and software metrics have been described. In
Section IV, the proposed method for determining the
software security level with metrics using Bayesian
classifier is explained. Developed web based metric analysis
tool usage is described in Section V. In addition, the
analysis phases are given step by step with screenshots. At
the end of the analysis, security classification was shown
with reporting. In the last section, the gains of the
application and planned activities were explained.

II. LITERATURE SURVEY

After examining the literature about software security, the
role of static code analysis in security precautions has been
observed to have increased in recent years. Code metrics
which ensure statistical inference in static code analysis are
considered by researchers in different areas in order to
identify software quality, risk, and sustainability.

Finlay et al. [5], in their study, described the extraction of
source code metrics by using Jazz Database and the
detection of harmful and beneficial ones of these metrics
with a decision tree algorithm. Alan et al. [6] studied on the
estimation of defects in software. Defect calculation
provides an estimation of an error-prone module using the
software metrics and defective information which is
calculated over source code. Machine learning algorithms
are used in this study. Developed tool can calculate metrics
of the projects which were written with java and can defect
estimation with this information.

Studies have been made about some code metrics which
can be used to determine the software security.
Interpretation of numerical metrics, complexity metrics and
Halstead Metrics were mentioned in the security assessment
[7]. In another study, whether the metric complexity is
decisive in software weaknesses or not was researched. The
effect of software complexity to security problems and the
complexity of metrics were determined. The model was

74

developed to detect security problems with statistical
analysis and machine learning algorithms in commercial and
open source software.

Jurado et al. [8] in their study, implementation of fuzzy
logic to test cases and software metrics is described for
program evaluation. This article aimed to automatically
evaluate algorithms with running independently of static and
dynamic parts in programming language. Students who are
working with complex code can receive feedback. An
approach which is to analyse algorithms written by students
is presented. Algorithms offered as a solution by students
are compared with ideal algorithms given by teachers and
evaluated with fuzzy logic.

In literature, there are several metric types in different
categories. Chidamber and Kemerer are object-oriented
metrics [4], while McCabe Cyclomatic Complexity,
Halstead are metrics that are based on traditional functions
[9]. In another study, a method is proposed to calculate the
source code metrics for much lower costs. In a proposed
method, different code metrics calculations can be done in
case of need. Developed tool can measure Chidamber and
Kemerer metrics of c# and java code [10]. In the related
literature, it is seen that studies generally perform software
quality detection with code metrics. In some studies, the
effect of code metrics on software security is examined.
However, there is not any security analysis tool which is
developed by using metrics. In this study, unlike the related
literature, security level was tested by using metrics with
benchmark source codes. Security level was measured by
using Naive Bayes Algorithm in the web application which
was developed in this study.

III. STATIC CODE METRICS

Source code metrics in different categories can be
calculated for statically evaluating developed software.
Calculating code metrics is an issue that is discussed under
static code analysis. In this section, static code analysis,
software metrics, and metric types considered under this
study will be discussed.

A. Static Code Analysis

Static code analysis is a type that determines software
bugs and features without running software. Although
software quality is important in terms of work performance,
functionality, and reliability, the underlying logic is to
perform queries on code [11]. Additions and changes in
developing software cause conceptual and source code
errors to take place in software over time. These errors can
be controlled by reviewing and by using automated tools.
Static code analysis examines many subjects such as
metrics, architecture, and compliance with coding standards
in addition to error detection. While static analysis tools
detect mostly programming errors, assignment, and auditing,
reviewing can reveal functional errors as well [12]. But
reviewing may lead to individual errors and temporal losses.
Automated static code analysis tools have been working
very fast in terms of time. Sensitivity of static code analysis
depends on the time spent. More precise analysis requires
more resources and is time-consuming. If the analysis is
very fast, many undesired “false positives” will occur; on
the contrary, if analysis is very comprehensive, the

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

completion of the analysis will take a very long time [13].

Static code analysis tools appeal to users for different
purposes. Static analysis tools can be used in such areas as
type and style checking, program understanding, fault
finding, and security review. While static analysis is being
performed, methods like type inference, data flow analysis,
constraint analysis, defect analysis, and lexical analysis can
be applied on code. Data flow analysis which collects
meaningful data from programs and uses variables with an
algebraic approach is used in process programming. Data
flow analysis is used in the program optimization, program
verification, error resolving, parallel, vectoral, and serial
programming [14]. These tools usually generate a very large
number of alerts, but some of them are subject to false
positives [15]. In defect analysis, parameters which are sent
to vulnerable function, are followed by data flow analysis
from the first moment onward. If function parameters which
are entered under user control are defective, these
parameters are referred to as vulnerable when the source
code is examined. However, source code becomes secure if
defective variables are secured by secure functions [16].
Static code analysis generally brings out an analysis of the
semantic integrity of a program. The detection of errors and
vulnerabilities, source code metrics, architectural analysis,
and compliance with coding standards are analysed subjects
in static analysis.

B. Software Metrics

Existing software methods are inadequate in the
evaluation phase due to today's software being extremely
complex. Developers have reliable measurements in general
to evaluate their products and process. Effective and
accurate estimations are impossible with these complex
measurements. Improving management process depends on
the development of measurement, detection, and control
parameters. The purpose of software metrics is identification
and measurement of parameters affecting software
development [7]. Software metrics are a measure of
software. The purpose of metrics is to help developers in
software development planning and forecasting. If software
can be measured, software quality and security can be
controlled in a better way. Measurement is important to
apply in the early stages of development.

Software metrics are divided into two categories
including software product metrics and software process
metrics. Software product metrics are a measure of the
product's source code and design documents. However,
process metrics are a measure of process metric [17].
Metrics represent measure units that can make quantitative
observations. Metric types such as Number of lines of code,
Cyclomatic Complexity, Error Rate, and Maintainability
Index are used to evaluate software statistically. Tom
DeMarco has emphasized the importance of the software
scalability and metrics with this sentence: “You can’t
control what you can’t measure” [18]. In software
development process, changes can occur and this affects the
quality and safety of software. Control of developer team's
code can be achieved by regular analysis of the metrics.
Code has to be flexible, stable, and clear and to have low
maintenance costs to minimize errors in code. A qualified,
secure, sustainable development process can occur by

75

including the software metrics to the development process.
According to their usage, source code metrics are
represented in different categories.

C. Source Code Metric Types

Source code metrics can be analysed in three categories:

— Traditional Metrics

— Halstead Metrics

— Object Oriented Metrics

Among traditional metrics, Line of Code (LOC), Source
Line of Code (SLOC), Average Method number, Average
Parameter Number, Package Number, Comment Percentage
(CP), Interface Number, Average, and Parameter Number
are the most frequently used metrics. Object oriented
metrics are listed such as Comment Number, Function
Number, Line Number, Maintainability index, Cyclomatic
complexity, Weighted Methods per Class, Depth of
Inheritance Tree, Number of Children, Coupling between
Object Classes, and Lack of Cohesion in Methods. Total
number of operands and operators, single operand and
operator number, program length, program level, word size
of program, and program volume are considered Halstead
metrics.

IV. PROPOSED METHOD FOR DETERMINING SOFTWARE
SECURITY LEVEL WITH METRICS

In this section, in order to determine the security level of
the project and project's files with the calculation of code
metrics, the proposed method will be explained. Calculated
metrics can give ideas to developers in terms of software
quality and sustainability. To develop a secure software,
quality level of the software must be high. Factors such as
weight, operator, and number of lines in developed methods
may lead to malfunction, slowdown, or may even stop the
project. In this study, code metrics have been used to
measure software security levels. The fact that cyclomatic
complexity, maintenance of code metrics and that they can
measure quality serve as a guidance to the users. In our
literature survey, it has been observed that cyclomatic
complexity has a direct influence on security. Complex
systems may include many code lines, this may cause
security vulnerabilities. It is quite difficult to test complex
systems and software which cannot be tested may include
vulnerabilities. All the data on complexity influences
security [19]. The fact that maintenance of software is easy
and that software are sustainable contribute to the strength
level of a software. Besides, functions used and class density
define complexity of object oriented software. In this study,
code metrics have been used to measure security level
because of the influence of metrics on software security.
Static code analysis is applied in a secure development
process [20]. Code metrics calculation is a part of the static
code analysis.

In the proposed method, object oriented metrics are taken
into consideration and the points are determined according
to threshold values of the metrics; the points are given to
each class in the specified ranges. All the files in the project
that contains code files are classified according to the
security level by using machine learning algorithm. Naive
Bayes algorithm is used as the classification algorithm.

Software complexity and size are growing day by day and

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

this has accelerated the development of object-oriented
software. For this reason, object-oriented metrics are used in
the software security level determination method. In the
scope of this study, in addition to security determination,
traditional and Halstead metrics can also b e calculated.
Line of Code (LOC), Source Line of Code (SLOC),
Comment Line of Code (CLOC), Comment Percentage
(CP), Blank Line of Code (BLOC), Cyclomatic Complexity
(CC), Maintainability Index, Halstead Volume, Weighted
Methods per Class (WMC), and Number of Methods
(NOM) are measured with the developed analysis tool.

(Security Analysis)

Upload Project to Web Application

Select single file or Project

Determine Security Caterories

Calculate Metrics

Score metrics according to
threshod values

Determine Training Set

Classify Project Files with Naive
Bayes Algorithm

Report Projects

Fig. 1. Flowchart of determining security level of software.

Proposed method to determine the security level of
software is explained in Fig. 1.

A. Used Metrics for Classification

Weighted Methods per Class, Cyclomatic Complexity and
Maintainability Index are evaluated for security
classification. These three metrics types are used in software
measurement process in object oriented programs. Besides,
these metrics’ threshold values which make mathematical
calculations easy and the relation among metrics, facilitate
to define and explain new security level.

Cyclomatic Complexity: Metric which was introduced by
Thomas J. McCabe, is used to measure the complexity of an
algorithm in a method [21]. Complexity in a software can be
calculated with conditional expressions in methods [22]. It is
assumed that software security vulnerabilities are related to
software complexity [23]. If E is accepted as the number of
edges of the graph and if N is accepted as the number of
nodes, Cyclomatic Complexity can be calculated using the
formula in (1) [24]

CC=E-N+2. (1)

76

Weighted Methods per Class (WMC): Weighted methods
per class is calculated by dividing cyclomatic complexity to
the total number of classes. WMC shows the time and effort
to be spent for the development and maintenance of class.
[25]. Large number of functions in software has an impact
on inherited classes. Because functions which are being used
are inherited from the base class. As WMC is being
analysed, it can be stated that bugs have increased and
quality has decreased [26]. WMC can be calculated using
the formula in (2) [27]

cC LOC “ NOM

WMC = X ,
LOC Method Class

2

where CC = Cyclomatic Complexity, LOC = Line of Code,
Method = Methods in Class, NOM = Number of Methods,
Class = Number of Class.

Maintainability Index: Maintainability Index shows the
ease of Code Maintenance in the level of class members.
Having a big value means that sustainability level of the
program is high. Maintainability enables software
compatible with changed environment, helps faults to be

corrected and performance to be improved [28].
Maintainability Index is calculated as follows [29].
0,(172-5.2x 1n(HV)—0.23><
Mindex = MAX , @3
CC—16.2><ln(LOC))><@)
171
where HV = Halstead Volume, CC = Cyclomatic

Compolexity, LOC = Line of Code.

B. Assessment Method

While determining the level of security with metrics,
points are given as 0 to the risk metric, 50 to the semi-secure
metric and 100 to the secure metric considering the selected
metrics threshold. As result of the points’ average belonging
to the measured code file, security points arise. Threshold
values of Cyclomatic Complexity are given in Table I [30].

TABLE I. CYCLOMATIC COMPLEXITY RISK THRESHOLD.

Category Threshold (x) Risk Exposition
1 1<x<10 Usually smlple 'procedures,
little risk
2 11<x<20 Moderately cor}'xplex,
moderate risk
3 21<x<50 Complex, high risk
x>50 Not testable, very high risk
TABLE II. GENERALIZED CYCLOMATIC COMPLEXITY RISK
THRESHOLD.
Category Threshold (x) Risk Exposition
1 1<x<10 Usually sqnple 'procedures,
little risk
2 11<x<50 Moderately complex or
Complex, moderate risk
3 x>5 Not testable, very high risk
While scoring metrics according to Cyclomatic

Complexity, the max and min values of 2nd and 3nd rows’
threshold values are taken into account and are generalized
as semi-secure class. In Table II, generalized threshold
values are given in 3 categories.

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

Threshold values of Weighted Methods per Class (WMC)
are given in Table III [31].

TABLE III. WEIGHTED METHODS PER CLASS RISK THRESHOLD.

Category Threshold (x) Risk Exposition
1 1<x<20 Good values gf class
complexity
2 21< x <100 Moderate high yalues of
complexity
3 ¥>100 High cflasg compleX}ty, cause
or investigation

Threshold values of Maintainability Index (WMC) are
given in Table IV [32].

TABLE IV. MAINTAINABILITY INDEX RISK THRESHOLD.

Category Threshold (x) Risk Exposition
1 0<x<9 Low maintainability
2 10<x<19 Moderate maintainability
3 20<x <100 High maintainability

Each calculated metrics are scored according to the
threshold values of these metrics. The project file's risk
point is calculated by averaging metrics points. Risk point
calculation formula is given (4)

n
2 metric;

svr=5—,
n

“

where n Metric’s number, metric Metric Score
according to threshold, SV7 = Security Value Index.

In this study, the classification method is applied to
determine file security level because of the fact that all the
files which include code are to be examined. With the
classification which is performed by Naive Bayes algorithm,
the security level determination according to only the metric
values will be provided. Naive Bayes classifier is a
probabilistic model that calculates the impact on the results
of a particular property value without depending on other
features [33]. This algorithm comes into supervised learning
categories. It is certain which category sample data required
for classification belongs to. In Naive Bayes classification,
data which is taught in a certain amount is presented to the
system. A category of the data presented for education is
obligatory. New test data which is presented to the system
with probability calculations made on the taught data is
operated according to the probability values which have
been obtained previously and the category which the given
data belongs to is determined. The more taught data is in
numbers, the more certain to determine the test data's real
category is. This formula can be used in regards to the
Bayesian Classification in (5)

P(X|C) = [TP(X, | C).
k=1

(6))

By selecting the largest one in the calculated values,
which class unknown sample belongs to is calculated. (6)
represents the formula which gives the max value

argmax{P(X | Cl-)}. (6)

77

In Bayesian rule, while the verbal data's status in the set
determines the probability for calculating them; for a set
which contains numeric data, standard probability density
function can be used assuming that data distribute normally.
Due to metric usage for security rating system, calculation
method is done with the help of the density function. As the
variance and the mean value will be used in the formula, the
mean and variance values of each category are obtained in
the training set. These values are used to determine the
category of the test data. Probability density function is
given in (7)

1
P(X(IC;) = f(xk,ﬂcl.,ﬂci) =

27[0?
¢

where X = unknown class membership of an sample data, C
class membership, He, standard

average, o, ¢

deviation.
Sample file's security rating are shown in Table V based
on metrics threshold.

TABLE V. SAMPLE FILE'S SECURITY RATING.

Metric Score
Metric According to Security Point
Threshold
gz;:‘l’);‘;:ﬁ; 24 50 point
WMC 19 100 point 6666666667
T Semi Secure
Maintaiability .
5 0 point
Index

V. WEB BASED METRIC ANALYSIS AND SECURITY LEVEL
TooL

In this study, an online analysis tool has been developed
which calculates metrics of uploaded project files on the
web. The developed software tool does the scoring of the
uploaded project files according to object oriented metrics
threshold by calculating the project files metrics. By using
Naive Bayes Classification algorithm, the security level of
the files in the project are determined. Developed software
is able to analyse different types of application with the .Net
Framework such as C#, WPF and ASP.NET. After logging
in the system which can be accessed on the web, all the
analysis which users make are stored in the system. Thus,
users can analyse retrospective code quality improvement
about the old tests. Our analysis tool can be reached at
http://metric.sariman.info. The web interface of the analysis
tool is given in Fig. 2. After login, users will analyse the
project files from the “New Analysis” part. Before starting
the analysis process, if desired, all the projects or the
selected project files can be analysed.

After performing metric analysis, users should make a
classification for the files’ security ratings. A training set is
created in Naive Bayes Algorithm for classification. The
training set can be created both individually and by a certain
percentage users determine among users’ uploaded projects.
For classification, sample training set and security
categories screenshot are given in Fig. 3. For the training
set, training data has been defined in the categories- risky,

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

semi secure and secure- assuming that it will not be in the
test class.

New Project

Project Name ProjectTest
File Upload | Dosya Seg |

Upload |File uploaded is succesful...
File Name: sorusturma.zip

File Size:468KB
MUHUKUK/MUHUKUK.sIn
Uploaded File
=¥ MUHUKUK 800!_—' 4136- 9586 CF FF28' 19

#-(DProje.Business

EndProject
Project("{FAE04EC0-301F-11D
"Proje.DataAccess”, "Proje.Dat:
{A3064271-8037- 422F 8D0D-1:
EndProject
Project("{FAEO4EC0-301F-11D.
"Proje.Sabitler”, "Proje.Sabiflert
9832-4BAD-9680- 25CAD56187
All Project v EndPFOJEC‘t
: Project("{FAEQ4EC0-301F-11D
"Proje.Web", "Proje.Web\Proje
AF3 2E2E88E1F5}"

Start Analysis EndPrOJ oct

Fig. 2. Security Level Web Tool “New Analysis” page.- -

dji' QProJe.DataAccess
- DProje.Sabitler

- EAProje.Userkontrol
- CAProje.web

-~ [E) Default.aspxr.cs

i~ B MUHUKUK.nuo

- [E] MUHUKUK.sIn

Analysis
Type

Security Level Training Set

Cyclomatic Complexity ~ Maintainability Index =~ WMC Score Category

0 0 0 0 Risk

1 54 1 100 Secure

12 21 19 83,33333333 Secure

0 17 0 16,66666667 Risk

18 28 22 66,66666667 Semi Secure
52 115 0 0 Risk

30 9 17 50 Semi Secure
3 44,91032568 15 100 Secure

53 19 5 50 Semi Secure
10 26 64 83,33333333 Secure

123
Fig. 3. Security Level Web Tool “Training Set” page.

In this study, 10 training data for each category have been
determined randomly for these 3 categories in 30 training
sets. Training set has been specified by taking random data
which are between threshold values of each metric. Sample
training set is given in Table VI.

TABLE VI SAMPLE TRAINING SET.

Cyclomatic Maintain-

No | Complexity/ VSVMC/ ability Index/ Total | Categ-

core Score ory

Score Score
. 22/50 . 16.6 .

1 0/ 0 point points 4 /0 point(s) points Risky

2 16 / 50 points 2/1.00 25, ./ 100 83.'3 Secure
points points points

3 | 36/50points | 190 | 20/50 points | o= | Semi

points points | Secure

After creating the training set, Bayes is run in Bayes
classification page and the results are shown in Fig. 4. The
results show the value of each category of all the files in the
uploaded project. According to Bayes classification,
evaluation in (6) is given in Fig. 5.

Security level of users’ projects files can be seen by
clicking on “Reports”. In the reports page, user's old
analyses and security levels can be seen. In addition, by
selecting the line, the metric report and demographic
representation are shown in the page. Figure 5 and Fig. 6

show the reporting pages of the application.

2k ‘ My Reports

Report Name ProjectTest

Classify Run Bayes Classification
= ‘ Classification Results

cyel . PR
File Complexity Index WMC Type Result
Kullanici.cs ?,8880909214819335 %8778132240900035 0,00130982408213099 Risk 2,3383938685064385
Kullanici.cs 0,0096692868364961 0,0094415651539402 0,0125413941898346 gzme 0,309474609670008
Kullanici.cs 0,0159677353178998 0,0134142777914622 0,0185529848554036 Secure 0,690525390329992
Log.cs ?,888090921481933E— %;38928487097331E 0,00130982408243099 Risk 1,21435062514267E-
Log.cs 0,009669: 4961 0,0093590025415829 0,0125413941898946 gzz?_llre 0,309257497512723
Log.cs 0,0159677353178998 0,0133104942056804 0,0185529848554036 Secure 0,690742502487277

Fig. 4. Security Level Web Tool “Bayes Classification” Page.

gy ‘ My Reports

Reporl Name ProjectTest

Project Name File Name LOC SLOC BLOC Level Score
Proje.Sabitler Assemblylinfo.cs 36 15 4 * 0
Proje.Sabitler Extension.cs 7 41 8 0,682380594644704 Secure
Proje.Sabitler Ortak.cs 2092 1139 161 0,778143807866691 Semi Secure
Proje.Sabitler Yetkilendirme.cs 49 26 3 0,65814383502 755 Secure
Proje.UserKontrol Assemblylnfo.cs 36 15 4 0
Proje.UserKontrol Button.cs 21 10 3 0,688825579107309 Secure
Proje.UserKontrol Detailsview.cs 57 28 It 0,6616/1149110304 Secure
Proje.UserKontrol DropDownList.cs 23 11 4 0,689708404368525 Secure
Proje.UserKontrol Gridview.cs 63 22 8 0,680375407373698 Secure

Fig. 5. Security Level Web Tool “Reports” page 1.

MC (Weighted

Methods per Class)

Methods)
Read full rep Read full report

I . [---

M.Index Halstead ~WMC NOM

Demographics

C SLoC BLOC CLoc @p @g
Thls chart shows us the rate of my selected report's Code Metrics value.

Fig. 6. Security Level Web Tool “Reports” page 2.

VI. EVALUATION

Metrics of all uploaded project files can be calculated and
appropriate files to the metric threshold have been
categorized for security categorization. Metrics threshold
values are taken into consideration for security
categorization system. Score based assessment method was
used in the developed method. By using risk score
calculation formula in Equation 4, project files score were
calculated according to the threshold values in Table VII.
Scores in response to metric values are shown in Table VII.

TABLE VII. METRIC SCORES ACCORDING TO THRESHOLDS.

Category Threshold (x) Score Risk Exposition
1 0<x<20 0 Risk
2 21<x<70 50 Semi Secure
3 70<x <100 100 Secure

According to the assessment of threshold values, 0, 50
and 100 points are given with the classification of risky,
semi-secure, and secure. In the security assessment, object
oriented Cyclomatic Complexity, Weighted Methods per

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

Class, and Maintainability Index metrics are used. While the
value of these metrics give information about class and
method's code maintenance or quality of code, their effects
on security has also been identified in the literature studies.
For metrics which give mathematical data about code lines,
code files were classified by using probabilistic model
which calculates the impact of a certain property value on
the result without depending on other features. For this
reason, Naive Bayes Algorithm was used in this study.
Uploaded files to the system with supervised learning
algorithm were classified according to the training set.
General scoring of the examined project files is calculated
by taking the average according to the metrics and then
matched with the corresponding category. This definition is
done for the whole training set. Metric values of a .Net
Framework project are used to train the system. To improve
the classification performance in the training set, 30
different files from the test set are used. Classification rates
belonging to the evaluation of the data set are given in
Table VIII.

TABLE VIII. EVALUATION OF INSTANCE DATA SET.

Instance Rate
Correctly Classified Instance 38 95 %
Incorrectly Classified Instance 2 5%

During the test, the developed sample project’s file that
contains 68 lines of code of file has been analysed. Some
files’ metric calculations could not be done. While 38 out of
the remaining 40 files have been classified correctly, 2 files
could not be classified correctly. Classification achievement
rate has been found to be 95 %. The highest classification
rate has been in the “safe” category. Two out of 5 “semi-
secure” files were expected to be in the safe category. One
code file has been classified in the risk group. In the sample
studies, decrease of classification success has been observed
where the training set was less than the others.

VII. CONCLUSIONS

Software quality and security categorization are measured
at every stage of development with the developed software
and the proposed method. Thanks to the measurement of the
metrics, scoring is done by evaluating risky cases about the
developed code according to threshold values. Software
component's risk group is determined with classification
method. Users can always use the online system running
with membership information. Determining security level
with metrics has provided developers with a different
approach. There have been previous studies on defining
security metrics and which metrics can determine software
security. Whereas, in this study, Bayes Classifier has been
used in classification of software whose metrics are
measured. Security assessments can be done at every stage
of developing software. Thus, it can reduce project costs
considerably. For future studies, the process of determining
security levels with metrics is aimed at developing a tool
which covers all software programming languages. The
developed web based software was designed to be used both
by developers and as a training tool in safety courses. With
the help of the developed tool, software companies can raise
standards of secure software development by testing their

79

products and reduce project costs. Calculation of metrics in
mobile applications software is also planned in the next
version of the application. Moreover, presentation of a
hybrid approach with artificial intelligence in the evaluation
of metrics is among the future plans.

REFERENCES

F. Karayumak, “Software security program (Yazilim Guvenligi
Programi)”, 2013. [Online]. Available: https://www.bilgiguvenligi.
gov.tr/yazilim-guvenligi/yazilim-guvenligi-programi (in Turkish)

J. Ravi, Z. Yu, W. Shi, “A survey on dynamic web content generation
and delivery techniques”, Journal of Network Computer Applications,
vol. 32, pp. 943-960, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2009.03.005

F. M. Puchkov, K. A. Shapchenko, “Static analysis method for
detecting buffer overflow vulnerabilities”, Programming and
Computer Software, vol. 31, pp. 179-189, 2005. [Online]. Available:
http://dx.doi.org/10.1007/s11086-005-0030-8 [Online]. Available:
http://dx.doi.org/10.1007/s11086-005-0030-8

J. Ravi, Z. Yu, W. Shi, “A survey on dynamic web content generation
and delivery techniques”, Journal of Network Computer Applications,
vol. 32, pp. 943-960, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2009.03.005

J. Finlay, A. Connor, R. Pears, “Mining software metrics from jazz”,
9th Int. Software Engineering Research, Management and
Applications, Baltimore, MD, 2011, pp. 39-45. [Online]. Available:
http://dx.doi.org/10.1109/SERA.2011.40

0. Alan, C. Catal, U. Sevim, B. Diri, “Software defects estimation
tool with flaw data in limited number (Sinirli Sayida Kusur Verisiyle
Yazilim Kusur Kestirim Araci YAKUT)”, 4" National Software
Engineering Symposium. (4. Ulusal Yaziilim Muhendisligi
Sempozyumu), 2009, pp. 315-318. (in Turkish)

T. Kumar, A. Sumithra, K. Alagarsamy, “The applicability of existing
metrics for software security”, Int. Journal of Computer Applications,
2010, pp. 29-33, vol. 8, mno. 2. [Online]. Available:
http://dx.doi.org/10.5120/1184-1638

F. Jurado, A. M. Redondo, M. Ortega, “Using fuzzy logic applied to
software metrics and test cases to assess programming assignments
and give advice”, Journal of Network and Computer Applications,
vol. 35, no. 2, pp. 695-712. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2011.11.002

R. Subramanyam, M. S. Krishnan, “Empirical analysis of CK metrics
for object-oriented design complexity: implications for software
defects”, IEEE Trans. Software Engineering, vol. 29, no. 4, pp. 297—
310, 2003. [Online]. Available: http://dx.doi.org/10.1109/TSE.
2003.1191795

H. Yoshiki, S. Akira, Y. Goro, M. Tatsuya, K. Shinji, I. Katsuro, “A
pluggable tool for measuring software metrics from source code”, in
Proc. 2011 Joint Conf. 21st Int. Workshop on Software Measurement
and the 6th Int. Conf. Sofiware Process and Product Measurement,
2011, pp. 3-12. [Online]. Available: http://dx.doi.org/10.1109/IWSM-
MENSURA.2011.43

G. Sariman, E. U. Kucuksille, “Secure software development life
cycle and static code analysis. (Guvenli Yazilim Gelistirme Yasam
Sureci ve Statik Kod Analizi)”, 6th. Int. Conf. Information Security
and Cryptology (ISC Turkey 2013), Ankara, 2013, pp. 282-286.

J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl,
M. A. Vouk, “On the value of static analysis for fault detection in
software”, IEEE Trans. Software Engineering, vol. 32, no. 4, 2006,
pp. 240-253. [Online]. Awvailable: http://dx.doi.org/10.1109/TSE.
2006.38

R. Eklof, “Improving software development with static code analysis
in a traceable environment”, M.S. thesis. Dept. Industrial Eng.,
Vetenskap Och Konst Univ., Stockholm, Sweden, 2011.

V. Satyanarayana, M. V. B. C. Sekhar, “Static analysis tool for
detecting web application vulnerabilities”, Int. Journal of Modern
Engineering Research (IJMER), vol. 1, no. 1, pp. 127-133, 2011.

H. Sozer, “Integrated static code analysis and runtime verification”,
Software: Practice and Experience, vol. 45, no. 10, pp. 1359-1373.
[Online]. Available: http://dx.doi.org/10.1002/spe.2287

J. Dahse, “RIPS - A static source code analyser for vulnerabilities in
PHP scripts”, Seminar Work (Seminer Calismasi). Horst Gortz
Institute Ruhr-University Bochum. 2010.

1. Demirbas, “Software product metrics (Yazilim Urun Metrikleri)”,
2012. [Online]. Available: http://ikabadayi.blogspot.com.tr/2012/01/
yazlm-urun-metrikleri.html (in Turkish)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 2, 2016

T. DeMarco, Controlling Sofiware Projects: Management,
Measurement and Estimation, Prentice Hall PTR, Upper Saddle
River, NJ, 1986.

Jr. T. McCabe, “Software quality metrics to identify risk”, 2010.
[Online]. Available: http://www.mccabe.com

J. Manico, “Secure development lifecycle”, 2013. [Online]. Available:
https://www.owasp.org/images/7/76/Jim_Manico_(Hamburg)
Securiing_the SDLC.pdf

T. J. McCabe, “A complexity measure”, [EEE Trans. Software
Engineering, vol. SE-2, no. 4, pp. 308-320, 1976. [Online].
Auvailable: http://dx.doi.org/10.1109/TSE.1976.233837

A. Garg, “An approach for improving the concept of Cyclomatic
complexity for object-oriented programming”, Cornell University
Library, 2014. [Online]. Available: http://arxiv.org/abs/1412.6216

G. McGraw, Software Security: Building Security In. Boston, NY:
Addison-Wesley, 2006.

A. H. Watson, T. J. McCabe, Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric, NIST Special
Publication, pp. 500-235, 1996.

F. Buzluca, “Yazilim Metrikleri”’, 2013. [Online]. Available:
http://ninova.itu.edu.tr/tr/dersler/fen-bilimleri-enstitusu/2716/blg-625
M. P. Thapaliyal, G. Verma, “Software defects and object oriented
metrics — an empirical analysis”, Int. Journal of Computer
Applications, vol. 9, no. 5, pp. 41-44, 2010. [Online]. Available:
http://dx.doi.org/10.5120/1379-1859

F. Buzluca, “Determination of design defects (Tasarim Kusurlarinin

80

(28]

[29]

[30]

[31]

[32]

[33]

Belirlenmesi)”, 2013. [Online]. Available: http://ninova.itu.edu.tr/tr/
dersler/fen-bilimleri-enstitusu/2716/blg-625/ (in Turkish)

R. Selvarani, G. Nair, M. Ramachandran, K. Prasad, “Software
metrics evaluation based on entropy”, Int. Journal of Computer
Science, vol. 8, no. 2, pp. 20-28, 2009.

Code Analysis Team Blog, “Maintainability index range and
meaning”, 2007. [Online]. Available: http://blogs.msdn.com/b/
codeanalysis/archive/2007/11/20/maintainability-index-range-and
meaning.aspx.

H. M. Olague, L. H. Etzkorn, G. W. Cox, “An entropy-based
approach to assessing object-oriented software maintainability and
degradation - a method and case study”, in Proc. Int. Conf. Software
Engineering Research and Practice, 2006, pp. 642—652.

R. Selvarani, G. Nair, M. Ramachandran, K. Prasad, “Software
metrics evaluation based on entropy”, Int. Journal of Computer
Science, vol. 8, no. 2, pp. 20-28, 2009.

M. Sookhak, H. Talebian, E. Ahmed, A. Gani, M. K. Khan, “A
review on remote data auditing in single cloud server: taxonomy and
open issues”, Journal of Network and Computer Applications, vol. 43,
pp. 121-141, 2014. [Online]. Available: http://dx.doi.org/10.1016/;.
jnca.2014.04.011

A. Joshi, V. Geetha, “SQL injection detection using machine
learning”, in Int. Conf. Control, Instrumentation, Communication and

Computational ~Technologies (ICCICCT). Kanyakumari, 2014,
pp. 1111-1115. [Online]. Available: http://dx.doi.org/10.1109/
ICCICCT.2014.6993127

