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Introduction

Speech signal contains several levels of information. At
first it contains information about the spoken message. At
second level speech signal also gives information about the
speaker identity, his emotional state and so on.

The task of speaker recognition can be divided into two
parts. speaker identification and speaker verification.
Speaker identification is answering the question which one
of the group of known voices best matches the input
voice. Speaker verification is answering the question is
really this person who clams to be. Also speaker
recognition can be text dependent or text independent. In
text dependent speaker recognition, speech recognition is
performed too and there are used the same methods as in
speech recognition.

In speech and speaker recognition systems various
features are used [1], calculated from the short intervals
(named as frames) of the speech signal: coefficients of
Linear prediction coding (LPC), cepstral coefficients,
caculated from LPC model (LPCC), mel-cepstrum
coefficients (MFCC), bark cepstrum coefficients, delta
cepstrum and so on. Duration of the frame is about 25ms.
These frames overlap one another. The same features are
often used in speech and speaker recognition systems,
however there are two completely different tasks.

There are proposed a lot of methods for speaker modelling
and recognition. In text dependent speaker recognition the
most popular methods are dynamic time warping (DTW),
Hidden Markov Models (HMM) [2]. In text independent
speaker recognition the most popular methods are: Vector
Quantization (VQ) [3], fully connected (ergodic) HMM's,
artificial neural networks (ANN) [4], support vector
machines (SVM) [5], and Gaussian Mixture Models
(GMM) [6].

In this paper we would like to propose text independent
speaker recognition method with new feature vectors, that
consist of fundamental frequency and four formant
frequencies, try to build Gaussian Mixture speaker models.
Vector Quantization method was employed for initial
parameters estimation of speakers GMM. Experiments of
speaker recognition were performed and compared with
experiments using Gaussian Mixture Models with mel —
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frequency cepstral coefficients, that is baseline in speaker
recognition.

Features of the speech signal

Now we consider some features of the speech signal,
which were used in this research.

Speech production can be divided into three stages [7]:
first stage is the source production, second stage is the
articulation by vocal tract, and the third stage is the sound
propagation from the lips and nostrils. The most important
components of human speech production system are the
lungs, trachea, larynx, nasal cavity velum, hard palete
tongue, teeth and lips. All these components are called
articulators. They move to the different positions to
produce various sounds. There are three main cavities:
nasal oral and pharyngeal that comprise the main acoustic
filter. Combination of these cavities and articulators is
called voca tract. A voiced sound is generated by
vibratory motion of the vocal cords powered by airflow
generated by expiration. The frequency of oscilation of
vocal cords is called the fundamental frequency. Unvoiced
sound is produced by turbulent airflow passing through a
narrow constriction in the vocal tract.

Modeling process is divided into two parts: the excitation
(source) modeling and the voca tract modeling [8]. This
approach is based on the assumption of independence of
the source and the vocal tract models.

Voiced signals can be modeled as a fundamental frequency
signal filtered by the vocal tract and unvoiced is a white
noise also filtered by the vocal tract. We can think about
vocal tract as a digital filter that affects source signal, so
from the filters output we can extract filter parameters.

In the model of linear prediction (LPC) coding, the
speech signal is shown as an autoregression sequence. It is
considered that in short time intervals the vocal tract is
time-invariant, therefore the value of the signal can be
approximately predicted having a certain count of the
previous signal valuesin their linear combination
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where §n]is the nth predicted value of the signal, u[n] is

an error signal, G is the amplification coefficient which
makes the energy of the actual and the predicted signal
equal, p isthe order of the LPC model.

Coefficients of the predicted filter g are calculated by
minimazing energy of the error signal. For this purpose
the Durbin algorithm is often used [9].

Fundamental frequency can be calculated from the
excitation signal that can be calculated having parameters
of LPC model and can be expressed as:

P
u[n] =s(n)-> a,gn-i]. 2
i=1

After that low-pass filter with cut-off frequency at
3000Hz is used and autocorelation function of the residual
(excitation) signal is calculated. The distance between two
peaks of the autocorelation function corresponds to the
fundamental frequency.

If we look at the Fourier spectrum of the signal frame
we will see there some peaks, what are called formants. In
the frequency range 200-5000Hz we can see 3-5 maximas.
Each formant corresponds to a resonance in the vocal tract.
Positions of the formants are well seen if we look at
transfer function of the vocal tract. We can calculate
transfer function from the LPC parameters, that
corresponds to the vocal tract.
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Fig. 1. Fourier transform of signal frame and transfer
function calculated from the L PC parameters

In the left side of Fig. 1 Fourier transform of the
signal frame of the vowe a is shown. In the right side
transfer function calculated from the LPC parameters of
this frame is shown, where positions of the formants are
seen visibly.

Calculation of the formants is the task complicated
enought. This is because maximas of the spectrum
disappear in certain conditions and their calculation from
the envelope of the spectrum becomes imposible. Method
of the line spectral pairs [10] was used for this purpose.

Gaussian Mixture Models

Gaussian Mixture density is weighted sum of M
component densities and can be expressed:

M
p(X|2) =2 pb (%), A3)
i=1
where X is D dimensional vector, p, is the component
weight, b (X) - component densities, that can be written:
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where y; - mean vector, Zi - covariance matrix.
Mixture weights must satisfy constraint:

>

i=1

p=1- ®)

Gaussian mixture density is parametrized by the
mean vectors, covariance matrices and mixture weights.
All these parameters are represented by notation:

A={pu, Y, Ji=12.,M -

So, each speaker is represented by hisher GMM and
is referred by his/her model A

The other task is to estimate the parameters of GMM
A, which best matches the distribution of the training
feature vectors, given by speech of the speaker. There are
several available techniques for GMM parameters
estimation [11]. The most popular method is maximum
likehood (ML) estimation [12]. The basic idea of this
method is to find model parameters which maximaze the
likehood of GMM. For a given set of T training vectors
X ={X,...Xr} GMM likehood can be written:

(6)
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ML parameter estimates can by obtained iteratively
using specia case of expectation-maximization (EM)
algorithm. There the basic idea is, beginning with initial
model A, to edimae a new model A, that
p(X |A)> p(X|1). The new model then becomes the

initial model for the next iteration. This processis repeated
until some convergence threshold is reached.

On each iteration, folowing reestimation formulas are
used: mixture weights are recalculated
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Means are recal cul ated
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The a posteriori probability for acoustic classi is
given by:
. b, (X
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Vector quantization algorithm was used for finding
initial parameters of GMM. Count of clusters was equal to
the count of Gaussian mixtures. Means and variances of
clusters were taken as initial parameters of GMM. Initial
mixture weights were calculated as ratio of feature vectors,
that makes a cluster with all feature vectors.

Experimental results

Experiments of speaker recognition were performed
using three different features: four formants, four formants
and fundamental frequency, and mel-frequency cepstrum
coefficients (MFCC) of 13-teen order. Speech database
consisted of forty two male speakers, where every person
had pronounced the same phrase fifteen times. Three or
four phrases were used to build Gaussian mixture speaker
models for every speaker and every type of features and
other phrases were used for testing. Count of mixtures
differed from 12 to 16.

In Fig. 2 curves of intraindividual and interindividual
distortions of the likehood are shown using mel frequency
cepstral coefficients.
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Fig. 2. Intraindividual and interindividual distortion using MFCC

0 - T T T
9E08 8210 BE13 5415 4018 2970 4367

Intraindividual distortions are obtained when phrases
and models of the same speaker are compared.
Interindividual distortions are obtained when phrases and
models of the different speakers are compared. In the ideal
case there is no intersection between intraindividual and
interindividual distortions and this intersection leads to the
recognition mistakes, that can be of the two types: false
accept (FA) and false reject (FR). False accept error is
when impostor is accepted as own person. False reject
error is when the own person is discarded as impostor.

In the Fig. 3 FAR — FRR and DET (Detect Error
tradeoff) curves are shown using MFCC. These curves are
often used to represent accuracy of recognition results.

FAR-FRR curves
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Fig. 3. FAR-FRR and DET curvesusing MFCC

The equal error rate (ERR) 9.6% was obtained.

In Fig. 4 intraindividual and interindividua
distortions are shown using four formants frequencies and
in the Fig. 5 corresponding FAR-FRR and DET curves are
shown.
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Fig. 4. Intraindividual and interindividua distortion using
formant frequencies
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Fig. 5. FAR-FRR and DET curves using formant frequencies

The equal error rate (ERR) 15.1% was obtained.

In Fig. 6 intraindividual and interindividua
distortions are shown using four formants frequencies with
fundamental frequency and in the Fig. 7 corresponding
FAR-FRR and DET curves are shown.
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Fig. 6. Intraindividual and interindividual distortions using
formant frequencies and fundamental frequency
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Fig. 7. FAR-FRR and DET curves using formant frequencies and
fundamental frequency

The equal error rate (ERR) 9.7% was obtained in this
case.
Conclusions
1. Formant frequencies and fundamental frequency can be
used as a features for speaker recognition task.
Results of accuracy of speaker recognition achieved
using mel — frequency cepstral coefficients and formant
frequencies with fundamental frequency are quite the
same. But parameters estimation of GMM using mel —
frequency cepstral coefficients continues few times
longer.
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3. The worst results were achieved using as the features 8. Deller J. R., Hansen J. H. L., Proakis J. G. Discrete-Time
formant frequencies only. Processing of Speech Signals. — Piscataway (N.J.): |EEE
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J. Kamarauskas. Speaker Recognition using Gaussian Mixture Models // Electronics and Electrical Engineering. — Kaunas:
Technologija, 2008. — No. 5(85). — P. 29-32.

Gaussian Mixture models is one of the most popular statistical methods in speaker recognition. The purpose of this research is to
perform experiments of speaker recognition using various feature vectors: four formants, four formants with fundamental frequency and
mel cepstrum coefficients. Gaussian mixture models using mel cepstrum coefficientsis baseline in speaker recognition and gives one of
the best results in text independent speaker recognition. After implementing experiments of speaker recognition and comparing
experimental results we can affirm that mel scale cepstral coefficients and four formants with fundamental frequency gives quite the
same recognition accuracy, but creating of Gaussian mixture speaker models and recognition process continues a few times longer
using mel scale cepstral coefficients, because count of calculations is few times greater in that case. Using only four formants gives the
worst results of recognition accuracy. Ill. 7, bibl. 12 (in English; summariesin English, Russian and Lithuanian).

10. Kamapayckac. PacnosHaBaHue roBopsiliero UCrosib3ysi MoJelb rayccoOBbIX cMeceil / DJIEKTPOHMKA M 3JIeKTPOTEXHUKA. —
Kaynac: Texnosorusi, 2008. — Ne 5(85) — C. 29-32.

Mopean TraycCcoBBIX CMeced SIBISIIOTCS OJHMMH U3 CaMbIX PACIOCTPAaHEHHBIX CTATHCTHYECKHX METOIOB pPa3lo3HaBaHMS
roBopsiiero. Llenb 3TOro HCCIEeAOBaHMS — IPOBECTH SKCHEPUMEHTHI DPACHO3HABAHMS TOBOPSIIETO HCIONB3Ys Pa3HbIC BEKTODBI
MPU3HAKOB: YeThIpe (HOPMaHThHI, YeThpe (HOPMAHTHI C OCHOBHBIM TOHOM M Mel—KencTpajibHble Kod(dHuIueHTs. Moean rayccoBbix
cMeceil ¢ Me—KeICTPaIbHBIMU KOG HUIMEHTaMH SIBISIFOTCS. OAHUMH M3 CaMBIX PAaCHOCTPAHEHBIX METOOB, JAIOLIMX OJHM U3 CaMbIX
JyYIINX Pe3yJbTaTOB B HE3aBHCHMOM OT TEKCTa PACHO3HABAHHU TOBOPSILEro. I10ciae MpOBEACHHBIX IKCICPUMEHTOB PACIO3HABAHMS
TOBODSILLIEr0 M CPAaBHCHHS JKCIECPHMEHTANBHBIX PE3YJNTATOB MOXKHO HEIATh BBIBOA, YTO MEJ—KENCTPalbHble KO3(D(UIHEHTH AAIOT
HOYTH Ty K€ CaMyl0 TOYHOCTh PACIIO3HABAHHS, YTO U YETHIPE (POPMAHTHI C OCHOBHBIM TOHOM, HO CO3JAHHE MOJEIH [ayCCOBBIX CMeceil
1 MPOLIECC PACIO3HABAHMUS HCIIOJIB3YSI MEN—KEICTpabHble KOA()OHIIMEHTHI TPEOYIOT HECKOJIBKO pa3 GoJIblie BpeMEHH, 4eM (hOPMaHTHI C
OCHOBHBIM TOHOM, IIOTOMY YTO B 3TOM CJy4Yae HY)XHO BBHIIOJIHUTH HECKOJBKO pa3 OOJblle BBHIYHCIHTEIBHBIX onepanuii. Xy/ume
Pe3yNbTaThl pa3lo3HaBaHKs MOJIyYAIOTCS UCHOJIB3YS. B MECTO HMPHU3HAKOB TOJIBKO YeThipe (opmaHThl. M. 7, 6ubi. 12 (Ha aHriniickoM
s3bIKe; pedpepaThl Ha AHTITMHCKOM, PYCCKOM M JIATOBCKOM $13.).

J. Kamarauskas. Kalbanéiojo atpazinimas taikant Gauso misiniy modelius // Elektronika ir elektrotechnika. — Kaunas:
Technologija, 2008. — Nr. 5(85). — P. 29-32.

Gauso misiniy modeliai — vienas i§ platiausiai taikomy statistiniy kalbanciojo atpazinimo metody. Sio tyrimo tikslas — atlikti
kalbanciojo atpazinimo eksperimentus naudojant jvairius pozymiy vektorius: keturias formantes, keturias formantes kartu su pagrindiniu
tonu bei mely skales kepstro koeficientus. Gauso misiniy modeliai su mely skalés kepstro koeficientais yra jau tape klasikiniu asmens
atpazinimo metodu, duodancdiu vienus i§ geriausiy nepriklausomo nuo teksto kabanciojo atpazinimo rezultaty. Atlikus asmens
atpazinimo eksperimentus ir palyginus gautus rezultatus galima daryti isvadas, kad tiek mely skalés kepstro koeficientai, tiek keturios
formantés kartu su pagrindiniu tonu duoda beveik ta pati atpazinimo tiksluma, taciau Gauso misiniy modelio karimas bei atpazinimas
panaudojant mely skalés kepstro koeficientus trunka kelis kartus ilgiau, nes siuo atveju reikia atlikti kelis kartus daugiau skai¢iavimo
operaciju. Prastiausi atpazinimo rezultatai gaunami naudojant tiktai keturias formantes. 1l. 7, bibl. 12 (angly kaba; santraukos angly,
rusy ir lietuviy k.).
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