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The dtatistical method for discrete stroboscopic
transform of signals was published in article [1]. In article
[2], a correction for reduction of the systematic error of the
method, which emerges in circumstances of a small
number of samples, was found. This research is devoted to
further improvement of signal transform precision.

Introduction

The principle of the statistical method is the
following. Let us assume that with normally distributed
noise, the momentary value of the masked signa at
moment t; is u;. Due to the masking activity of the
normally distributed grain noise of the stroboscopic
converter’s input level, actually the following value is
observed:

oy

where X is a normally distributed random value with a
mean

UI =Ui +X,

EX=0 2
and a standard deviation
DX =¢2, ©)

where o isaconstant value known for the specific device.
By performing standardization, further in the research
we can assume that o =1. In accordance with the

statistical method, at phase point t; the value of the signal
masked with noise is compared n times with a known
threshold e, . If, out of n times of comparison, Uj

exceeds the threshold € N times, then an estimation of

the signal’s momentary valueis calculated

U ot (P )re (4

where @ is the standard norma distribution function;
A + +
1 .. . n"+A(n . .
@1 —itsinverse function; P, =# —estimation
n

of the probability of exceeding the threshold; n* — the
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number of cases of exceeding the threshold; A(0)=1,
A(M=-1 and A(nT)=0 in &l other cases. After

N

calculation of U; , the next value of the threshold is set

€41 =6 +U; ®)
and, in an analogous way, the signal momentary value at
the next phase point t;,4 iscalculated. In case of wesk (i.e.

such signals, the amplitude of which is A <o) and,

furthermore, centred signals, a constant threshold equalling
0 may be used.

To speed up the locator, it is advisable to divide its
mode into 2 stages: signal detection and exact registration
modes. When the signal has been detected by using a small
number of samples, for its exact registration the scanning
can be repeated a sufficient number of times and averaging
can be performed, until the necessary signal-noise ratio is
obtained. However, it turns out that, with a small number
of samples, after averaging we obtain signal estimation
with a systematic error. This phenomenon was given the
name A2 paradox [2]. The goal of thisresearch isto reduce
the error caused by the paradox.

With the help of parameter
we shall determine the random value; , which assumes a
value of 1 with a probability p; and avalueof 0 —with a

b, = PU, >ei}:P{5>e‘_”‘
(e}

(6)
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probability 1— p; . Then the value n™ can be given as the
sum of n independent random values distributed equally

with Y;. Then n™ shal be the value of a binomialy
distributed random number with parameters n and p;.

Denoting this random value with X" , we can write that

@-p)™",
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7a(n*) = PIXP =n* [=cl ph @

p =1-o(3 ) —oi =5 ®)
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Inour case, where ¢ =0 and o =1, we can write

mn(i)=Clou)! @-ou) ™. 9)

As shown in [3], the average value of the measuring
result of the corresponding A is

A2 = Zﬂn(l)d)_l(
j=0

J+/1(J)) (10)
n

After that, we shall change A(n") so asto reduce the
signal estimation error. By introducing the denomination

o) =0 (2D, (11)

we can write the average value of the modification result
amplitude as
n

[ = Y 7n(D)0(0).

(12)

In this research, we shall use a superbroadband
radiolocation signa model as a signal example — harmonic
mono-oscillation with amplitude A . Due to the symmetry
of the masking noise distribution function, we shall use the
equation 8(j)=-60(n-j).

Apparently we can speak about correction only in a
limited digpason of amplitudes A;. Because of this we
shall choose arange 0< X <Y, which we divide into r
parts 0< X = A1 < Ao <...< Ay =Y. To minimise the

systematic error of signal measuring, we are interested in
the minimum of function

2| 1
E(Aﬂ )?

and shall look for such correction parameters, at which the
output signal values in the given diapason of amplitudes
differ the least from the corresponding input signal values.
Taking into account the continuity of 4, with respect to

0(j), it shall be in effect for the whole diapason, unless

the division is too crude. Depending on the chosen
parameters of correction, we shall obtain various methods
of systematic error reduction.

(13)

“Multiplier” correction.

By using equation (12), at a fixed input signal
amplitude A, number of samples n, the lowest discrete
2(0)

n

vaue €= and introducing correction multiplier k

(ie, taking into account that 6(0)=kd 1(e),

6(n)=-6(0) and Q(j):kqb_l(%) in the remaining

cases), the output signal amplitude average value 4, can
be written as
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Az (A nke) =
=k@Q"-P )@‘1(e)+zlnn(nd>‘1( ). (14)
]
where
O<e<1l. (15)

Therefore, in each limited diapason of amplitudes, for
the chosen 0< Ajp < Ay <...< Ay, we can look for the
minimum of function

n,k, e
Z(L 1?2 (16)
i=1 A
with respect to both k and ¢ .
With index i we shall denote the corresponding

values s, tj, Q;, R, =, a amplitude A;. Then we

must look for the minimum with respect to k and q)’l(e)

for function

roK(s® (o) +t;)

B=Y (o 1)
A

i=1

~1)2, (17)

Pn t = Z%.(J)CD_l( ).
=1

where 5 =Q" -

We shall denote d)’l(g) =(. To find the minimum,

we will use the necessary condition of differentiable
function extremum. For this purpose we will derive
equation (17) with respectto k and q.

By expanding equation (17), we obtain

r 2 2.2 W 2 2
(Z( k“q +23|t|k2q_ slkq k
A Ai Af
tik
-2-1). (18)
A
Both partial derivatives of equation (16) are:
(B)k—Z(zs' ACHIPL UICEPL L IPUL PR er
AL A A A
22 tik? sk
(B)q_z(zs' 1255 3% (20)
Al A
By composing and solving system
r 2
Z(zsikg WELLCPL P L AP
i=1 All A]-l A].l All (21)
r 2
Z(zS1I< 9 2S1t|< _25K) g,
i=1 AL Ay
with respect to k and g, we obtain:
ki =0 (22)



rot
27'
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i-1 A
and
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By using the sufficient condition of the differentiable
function extremum, it is easy to verify that the point with
coordinates (22), (23) is not, but the point with coordinates
(24), (25) isthe minimum point.

As B is an continiudy differentiable function with
respect to k and g, then the only local minimum shall also
be the global minimum. Therefore we can calculate the
coefficients of the “"multiplier’” correction method in
accordance with equations (24) and (25).

“Addend” correction.

For this correction method, we shall use parameters

-9 g the addend c. Taking 0(0)=®~*(e)+c,
n

6(n)=-6(0) and 6(j)=sign@ *d)(o*d) ) in

the remaining cases, we obtain equation (12) in the
following form

Ay (Ance)=(@Q"-PMd () +(Q"

n-L

n-1 H 2 n-1
Y (o) Tan(i)e- Yaa()c.  (26)
j=1 n o ja 2

-PMc+
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By using the previously introduced denomination

g= q)’l(g) , equation

zf: Siq+WC+t;

~12, 27
> Ay ) @7

where

=Q"-PR 1t —Z”m(l)q) (_)

n-1
2 ) n-1 )
W= Yrni(i)—- Xmi(i),
i=1 j:nLZ
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must be minimised with respectto q and c.

By expanding equation (27), we obtain:

r=re(y 42 30% zs't'zq 54 Wi¢
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Both partial derivatives of equation (28) with respect
to g and care

: s 9. ,SWc s S
Ng=>02— ——2—), 29
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By composing and solving linear equation system
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with respect to qand ¢, we obtain:

F
q:FI (32)
G
C:ﬁ’ (33
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Therefore the only stationary point with coordinates
(32) and (33) has been found. Taking into account that
equation (27) is limited from the bottom, this point will
also be the absolute minimum point.

“Combined” correction.
In order to further improve the precision of transform,

we can use a combination of both previous corrections. In
this case, at input signal amplitude A, multiplier k,



lowest discrete value ¢ and addend c, i.e. taking into
account that 6(0) = k((D’l(e)+c), 6(n)=-6(0) and
6(j) = ksign@ ()0t (L)|-¢) in the remaining

cases, we can write the output signal amplitude average
value as

A(Aynk,c,2) =k(Q" - PN () + (Q" - P")c+

n-1
n-1 H 457 n-1
+ Y aa (DO Tan(i)e-  Xan(i)o). (37)
j=1 n ja n+2

2

By using the previously introduced denomination
g= q)’l(e) , the equation
| k(agg+agc+as)

2 A

12, (39)

n-1 i
where a; = Q' —-R"; ag = Z”ni(])qfl(ﬁ);
=1

n-1

2 ] n-1
ag =ag + 2 (i)- Xmni(i)
=1 | n+2
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must be minimised with respectto k, q and c.

By grouping monomialstokq, kc and k, we obtain
by, by, and bz as coefficients, respectively. Then, in
formula (38), we can write the equation in brackets as

(byka +byck + bgk —1)? = bk ?q? +bac?k? + b2k +
+1+ 2bybyck 2 q + 2by gk 2q — 2by kg + 2b,back 2 —
—2b,ck — 2bsk. (39)

By expanding equation (38) and grouping monomials
to k2q2, c’k?, ckzq, k2q, ck?, k2, kg, ck and k,
we obtain dy ,..., dg as coefficients, respectively. Then, by
partially deriving equation

dik2q2 + dc?k? + dyck2q+d k2 +dgck ? +

+dgk? +d7kq+dgck + dgk +1 (40)
with respectto k, q and c, weobtain

(d1k2q2 + d,c2k? + dyck2q+ d 4k ?q+ dsck? + dgk? +

+d7kq+ dgck + dgk +1) . = 20;kq? + 2d ¢ %k + 2dgckq +

+2d4kq+ 2d5Ck+ 2d6k+ d7q+ d8C+d9 (41)

(d1k2q2 + d,c2k? + dyck2q+ d 4k g+ dsck? + dgk? +
+d7kg + dgck +dgk +1) = 2d1k?q + dack? +

+dgk? +d7k (42)
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(d1k?q? +dpc?k? + dack?q+dgk%q+ dsck? + dgk? +

+d7kg+dgck + dgk +1) ¢ = 2d,ck? +dk®q+

+dgk? +dgk . (43)
We compose an equation system
2d;kq? + 2d,c2k + 2d3ckq + 2d 4kq + 2d5ck +
+2dgk +d-q+dgc+dg =0
2dllfzq+;3ck28+d4k92+d7k:0 (49
2d,ck? + dgk?q+dsk? +dgk =0,

k

by solving of which we obtain q:g, c=i,

G
| |

where

F= 4d2d6d7 —2d2d9d4 —d7d52 - 2d6d8d3 + dgd3d5 +
+d5d8d4, (45)

G= 4d2dgdl - 2d2d4d7 + d7d3d5 + d3d8d4 — d9d32 —
2dsdgdy , (46)

H= d7d5d4 - 2d7d6d3 +4d8dld6 + d3d9d4 - 2d5d9d1 -
~dgdZ, (47)

| =2d,d2 —8d,d,dg +2d;dZ — 2dzdsd, +2d2dg. (48)

The solution of system (44) with certain q and ¢ can

aso be k=0. By using the sufficient condition of the
differentiable function extremum, it is easy to verify that in
that case, the respective point is not the minimum.
Therefore the point with coordinates g, ¢ and k is the only
possible point of extremum. As equation (40) is limited
from the bottom, the only possible point of extremum
found will be the minimum point. Therefore, in case of the
“’combined’’ method, we can calculate the correction
coefficients in accordance with equations of g, ¢ and k.

Practical application of correction methods

As a practica example of application of these
methods, we shall look at transform of superbroadband
radiolocation signal masked with noise o =1 at amplitude

values A =0.25; A =050; A =0.75; A =1.00;
A =125; A =150 and a a number of samples n

within the range from n=5 to n=30. In a datistical
modelling experiment, to obtain the average values of
output amplitudes with sufficient precision, the number of
numerical experiments is taken as N =50000. The
obtained results are shown in tables 1-3. The theoretically

calculated % relations have been denoted with index 1,

while index 2 denotes the experimentally obtained %

values.



Table 1. Results with the “multiplier” correction

n 025 | 050 | 0.75 | 1.00 | 1.25
5, | 0.980 | 0.999 | 1.018 | 1.023 | 1.007
5, 10979 | 1.008 | 1.019 | 1.027 | 1.005
10, | 0.987 | 0.996 | 1.008 | 1.015 | 1.009
10, | 0.989 | 0.992 | 1.013 | 1.016 | 1.009
15, | 0.989 | 0.995 | 1.004 | 1.012 | 1.010
15, | 0.986 | 0.999 | 1.011 | 1.013 | 1.008
20; | 0.990 | 0.995 | 1.002 | 1.010 | 1.010
20, | 0.995| 0.998 | 1.005 | 1.011 | 1.011
25;10.991 | 0.995 | 1.001 | 1.008 | 1.010
25, 1 0.987 | 0.999 | 1.001 | 1.005 | 1.011
30, | 0.992 | 0.995 | 1.000 | 1.007 | 1.010
30, | 0.997 | 0.997 | 1.006 | 1.008 | 1.010

1.50
0.970
0.969
0.984
0.982
0.990
0.990
0.993
0.992
0.995
0.997
0.996
0.996

_|

able 2.
n
51
S
10,
10,
15,
15,
20,
20,
25,
25,
30,
30,

addend”
0.75
1.022
1.027
1.021
1.023
1.022
1.026
1.019
1.024
1.017
1.019
1.014
1.014

correction
1.00
1.026
1.023
1.027
1.026
1.030
1.030
1.030
1.031
1.028
1.027
1.025
1.025

Results with the
0.25 | 0.50
0.978 | 1.001
0.967 | 1.005
0.977 | 1.000
0.978 | 1.001
0.975 | 1.000
0.979 | 1.005
0.977 | 0.999
0.982 | 1.004
0.979 | 0.999
0.980 | 1.004
0.981 | 0.999
0.981 | 1.002

1.25
1.007
1.003
1.011
1.010
1.016
1.017
1.020
1.020
1.022
1.021
1.023
1.022

1.50
0.965
0.964
0.972
0.971
0.978
0.978
0.983
0.983
0.987
0.988
0.990
0.991

Table
n
51
S
10,
10,
15;
15,
20,
20,
25,
25,
30,
30,

3. Results with the “combined” correction
025 | 050 | 0.75 | 1.00 | 1.25

1.004 | 0.996 | 0.996 | 1.003 | 1.007
0.997 | 0.996 | 0.990 | 1.003 | 1.009
1.003 | 0.996 | 0.996 | 1.003 | 1.007
1.005 | 0.995 | 1.001 | 1.004 | 1.003
1.003 | 1.000 | 0.996 | 1.002 | 1.005
1.001 | 1.003 | 0.997 | 1.006 | 1.005
1.003 | 0.997 | 0.996 | 1.002 | 1.005
1.009 | 1.000 | 0.996 | 1.002 | 1.005
1.003 | 0.997 | 0.996 | 1.001 | 1.005
1.004 | 0.997 | 0.996 | 0.999 | 1.004
1.003 | 0.998 | 0.996 | 1.001 | 1.005
0.999 | 0.999 | 0.999 | 1.001 | 1.005

1.50
0.995
0.996
0.995
0.992
0.996
0.996
0.997
0.996
0.998
0.997
0.998
0.998

From tables 1-3 it can be seen that:

1) the modelling results match the analytical
caculations well;

2) al correction methods in the given diapason of
amplitudes A, = 0.25-1.5¢0 ensure quite high precision of
measurements;

3) the highest precision is demonstrated by the
“combined” method;

4) by increasing n, the systematic error of transform
is reduced, and at sufficiently large n it can be
disregarded.

For illustration, Fig. 1 displays a comparison of
precision of the classic statistical method, the corrected
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method [2] and the “combined” method at Ay =1 and
number of samples within arange from n=5 to n=230.

A=l
1.1
1.05 A
1
- 0.95 3 ; l
< o9 / _ _
< 0 é5 / —¢—"combined" correction
6.8 / ——correction [2]
0.75 // classical method
0.7
5 10 15 20 25 30
n

Fig. 1. Comparison of the “classic” statistical method, correction
method [2] and “combined” correction methodat A =1

It shows that the “combined” method ensures
practically ideal compensation of the systematic error. It
must also be pointed out that the correction method
proposed in article [2] was designed for amplitude
digpason up to A =1, while the results obtained in this

research allow correcting the mistakeupto Ay =1.5.

For illustration, Fig. 2 displays the result of modelling
a transform of a superbroadband radiolocation signal with
the “classic” (non-corrected) statistic method in the signal
detection mode (one scan) at A =1.5,0=1and n=5.

Fig. 3 displays the result of averaging the same input signal
transform at m= 300 in the case of non-corrected method
(thin line) and “combined” correction (thick line). As the
modelling results show, in case of the “combined” method,
the signa modification precision increase is quite
significant.

[
I

!

0.5

B

-1

—_—T ]
—

Fig. 2. Result of transform of a superbroadband radiolocation
signal masked with noise with the “classic” statistic method in the

signal detection mode (onescan) at Ay =1.5, o =land N=5

In this research, the correction of the systematic error
was designed for the variable signal amplitude
diapason A, =0.25-1.5c . It is understandeble that, at

amplitude A; =0.250 in the signal detection mode, the



signal will be completely masked with noise. However, it
must be taken into account that an actual superbroadband
radiolocation signal is not a perfect mono-oscillation, but a
quickly fading oscillation process with a certain bending.
Because of that, in order to precisely register such actual
signals with the averaging method, correction is necessary

It must be pointed out that the “combined” correction
method is not the most precise possible method in an
absolute sense, because the minimising of the systematic
error is performed only by 3 parameters. In the genera
case, the mistake should be minimised by |n/2] variables,

which would be involved in a system of linear equations

in a sufficiently broad diapason of amplitudes. In our case,

) _ ' similar to (33). However it has no practical purpose, as the
it has been done in the diapason A, = 0.25-1.5¢c .

“combined” method of optimisation by three parametersis
dready displaying a sufficiently high precision of
2 transform.
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