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Indroduction

The asymptotic optimal quantization problem, even
for the simplest case - uniform scalar quantization, is very
actual nowadays, [1]. The importance of using the
rectangular cells and the optimal density (number) of
points for product quantization and Gaussian source is
considered in [2-3]. In [4] the granular gain (due to cell
shape, being 1.53 dB at the maximum) as well as the
boundary gain (due to the increase of the dimensions
number) was defined showing that the boundary gain
dominates at higher dimensions. In [5] the uniform cubic
quantization (only the boundary gain) is considered for 8
and 16 dimensions. In this letter, quantizers are designed
and analysed under additional constraint — each scalar
quantizer is a uniform one.

The optimization of two-dimensional Laplace source
quantization is analysed and the existence of a single
minimum, depending on the number of points for various
levels, is proven. The gain over the optimum uniform
scalar quantizer [5] is about (2.8-6.8) dB for rates from 4 to
8 bits per sample (see Fig.1). The resulting gain (obtained
using rectangule cells ) can even be compared to boundary
gain in highdimensional space.

Description and optimization

The 2-D (two-dimensional) probability density
function for independent identically distributed Laplace
random variables (source) with the zero mean and the unity
variance is given as

f)=4 e 2ubal), (1)

x is the source vector with elements x; and x,. To simplify
the vector quantizer, the Helmert transformation is applied
on the source vector giving contours with constant
probability densities. The transformation is defined as:

L L(]x1|—|x2|). The obtained
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probability density function is f (r,u):ze 2 The
quantizing cells are rectangular S; ([r,-,r,- 41 ); [u,]ul] H)),

and the representation vector is (m,.,zz,.j ). For a uniform

quantization having L concentric domain:

rp=>G-DA;, 1<i<L+1;m =(G-1/2)Ap,
1<i<L; Ap =rpax /L

w =(j=DA(0), —L<j<L+Lu; =(j-1/2)A,00),
—-L<j<L; A,@)=2m;/N,.

The number of cells in i-th concentric domain is
N,(m;). Every concentric domain can be subdiveded in four
equivalent subdomains, i.e. N,(m;)=4N; . The number V;
being the same for all the subdomain at i-th domainis. The
Helmart transform is ortogonal. The MSE (mean-square
error) per dimension can be separated into a granular
distortion D, and an overload distortion D,:
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By using aymptotic approximation, the following is
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obtained Dy =3’ m,-—L+m—’2 -P.(m;),
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where P.(m;)=2e>"MiA; . 3)

The minimization of the function Dy(N) (vector N=(
Ny,..., Ny)) for fixed number of magnitude levels L
constrained by the total number of reconstruction points
N/4 is formulated in this way: minimize Dy(N) under the
constraints
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gi(P)=P20;i=12,---L.

We prove that the problem of minimization of the
Dy(N) is a convex programming problem. This follows
directly from Lemma 1.

Lemma I: Function Dg(N) is convex and constraints
2o(N) and g;(N;) form the convex set.
Proof of Lemma 1

To prove that the function Dy(N) is convex and that
constraints gy(N) and g;(N;) form the convex set it is
sufficient to prove that Hessian matrices of the following
functions: Dg(N), -go(N), - gi(N;) 1<i<L are positive semi-
definite [6,p27].

We find partial derivative for N from (3) and it is:
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while the second partial derivative is:
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For Hessian matrix it obviously holds
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This completes the proof.
Optimal solution is found applying the method of
Lagrange multipliers.
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yielding : N; = for fixed N. For the

uniform quantization, after some manipulation the

]W'maxr\/3 g(r)

following is obtained N(r)= - where the
max
4L I r3g(r)dr
0
sum is approximated by the integral, and g(r):e_zr.
Returning to (3) the final expression for D, is:
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7. max 32L max
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In such a way a pretty simple solution for granular
distortion is :
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The optimal number of levels problem can be solved
analytically only for the asymptotical analysis from the

oD

condition a—ngo. The optimal solution is

2
/I N
Lopt = Tmax§ 604[ T Substituting this expression into (5),

granular distortion becomes:

D! =%1 NS (6)

This expression is similar to the optimal expressions
for the distortion of nonuniform asymptotic quantizers [3].

The expression for D.” ' can be interpreted as Zador-

Gersho formula for the uniform quantizer and a 2-D
Laplace source.

For comparing the obtained results to the previous
ones, I'm.x from [5] is used, being obtained for 1-D
approach. The corresponding D, is compared to the
obtained result using the following gain definition

G=1010g(Dgca[ /D "). The performance gain obtained

by our method over the uniform scalar quantization for
different rates can be presented in this manner: for R=4.
G=2.68dB; for R=5, G=3.31dB and for R=8, G=6dB.
Exactly optimal value for r,, is obtained by
repeating our optimisation method for different ry,, and
choosing the values for which mse=D,+D, is minimal. In
Fig.1 signal-to-quantization noise ratio



SONR =10log(1/ mse) vs. the number of bits per sample

R is shown. It can be concluded that the propsed 2-D
quantizer is even comparable to 16-D uniform quantizer

asymptotic  analysis  demonstrate  the  significant
performance gain over the uniform scalar quantization
(even 6.8dB for R=8). The obtained gain using rectangule

cells can even be compared to boundary gain in
highdimensional space. That automatically provides lower
2 complexity and easier realization.

from [5], also shown in the figure.
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Fig. 1. SQNR vs. the number of bits per sample for optimum
scalar quantization [5], 16-D uniform quantization [5] and 2-D
uniform quantizationan on Laplace source,  2-D uniform
quantization, ----- 16-D uniform quantization, optimum 5
scalar quantization '

Conclusion

The optimization of 2-D Laplace source uniform
quantization is carried out and the existence of a single
minimum depending on the number of points on various
levels is proven. Simple expression for granular distortion
in closed form is obtained. The results obtained by the
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Pateikiama paprasta ir kompleksiné dvimacio kvantizatoriaus analizé. [rodoma, kad Laplaso Saltiniy signalams blidinga kvadratiné
priemongs klaida. Optimizuojant kvantizatoriaus parametrus gaunama 6,8 dB klaida esant 8 bity santykiui. Nustatyta, kad, naudojant
staciakampg lastel¢ gaunamas didelis stiprinimas auksto lygio dimensiniuose pavirSiuose. Pateikiamas teoriniy ir eksperimentiniy
rezultaty palyginimas. Il. 1, bibl.6 (angly kalba; santraukos lietuviy, angly ir rusy k.).
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The simple and complete asymptotical analysis is given for a uniform two-dimensional quantizer for Laplace source with the
respect to the mean-square error. The significant gain over the optimum uniform scalar quantization is obtained (about 6.8 dB for the
rate of 8 bits per sample). The obtained gain using rectangular cells can even be compared to the boundary gain in highdimensional
space. I1l. 1, bibl. 6 (in English; summaries in Lithuanian, Russian, English).
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[IpencraBneH MpPOCTOH M CIIOXKHBIA aHANIHM3 JBYXMEPHOTO KBaHTH3aTopa. [lokazaHO, 9TO AN CHUTHAJIOB MCTOYHHKOB Jlammaca
XapaKTepHa KBaJpaTHIecKas ommOKa ycTpoicTsa. [Ipy onTuMu3aIy mapaMeTpoB KBaHTH3aTOPa MOTydaeTcs ommoOka nopsiaka 6,8 nb,
Korja cootHomeHue 8 OutoB. IIpy mpuMeHEeHMH NPSIMOYTOJNBHOM IIENH YCTPOMCTBA MOSBISIETCS BBIUIPHIINI JUIS BBICOKOYPOBHOM
JIVMEHCHOHHOH IOBEpXHOCTH. [IpMBOAMTCS CpaBHEHHE TEOPETHUECKMX M AKCIEPHMEHTAIbHBIX pe3yibraroB. Mm. 1, 6ubn. 6 (mHa
QHIIMHCKOM S3bIKe; pedepaTsl Ha TUTOBCKOM, aHTTIHHCKOM U PYCCKOM 513.).



