
   13

ELECTRONICS AND ELECTRICAL ENGINEERING 
 ISSN 1392 – 1215           2007.  No. 2(74) 

ELEKTRONIKA IR ELEKTROTECHNIKA 
 
 

ELECTRONICS 
      T 170 

ELEKTRONIKA 
 
 

Usability Evaluation of Finite Element Method Equation Solvers  
 
P. Tarvydas, A. Noreika 
Department of Electronics Engineering, Kaunas University of Technology 
Studentų str. 50, LT-51368 Kaunas, Lithuania, tel.: +370 37 300524, e-mail:  alius.noreika@stud.ktu.lt 
 
 
Introduction 

 
The behaviour of a phenomenon in an engineering 

system depends upon the geometry or domain of the 
system, the property of the material or medium, and the 
boundary, initial and loading conditions. For an 
engineering system, the geometry or domain can be very 
complex. Further, the boundary and initial conditions can 
also be complicated. It is therefore, in general, very 
difficult to solve the governing differential equation via 
analytical means. In practice, most of the problems are 
solved using numerical methods. Among these, the 
methods of domain discretization championed by the finite 
element method are the most popular, due to its practicality 
and versatility. 

The finite element method leads to a system of 
equations that must be solved simultaneously [1,2]. A 
complex model can generate a very large system of 
equations. Each equation represents an unknown quantity 
which is required to find. Each unknown quantity is also 
referred to as a degree of freedom. Solving a large system 
of simultaneous equations requires a long time and large 
computer resources. 

Software package ANSYS (ANSYS Inc., 
www.ansys.com) has industry leading solver technology to 
support robust and comprehensive simulation capability. 
Two types of direct solvers (Sparse Direct Solver, Frontal 
(Wavefront) Solver) are implemented in it and also three 
iterative solvers which are based on the conjugate gradient 
method (Jacobi Conjugate Gradient solver, Preconditioned 
Conjugate Gradient solver, Cholesky Conjugate Gradient 
solver) [3–6].  
 
Modeling algorithm 

  
In order to determine the performance of mentioned 

solvers the spatial model of colour TV-tube symmetrical 
electronic optical system is used [7,8]. Model is created 
only for side presumable electron trajectory. Such decision 
to use this system was assumed because electronic optical 
system modeling technique is already highly elaborated.  

 

 
Fig. 1. General modeling algorithm  
 

EOS modeling consists of four main stages [7,8] 
construction model creation, finite element mesh 
generation (tetrahedral finite element SOLID123 is used), 
setting of electrode potentials and solution of equation 
system (Fig. 1).  
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The performance of Sparse Direct, Distributed Sparse 
Direct, Jacobi Conjugate Gradient, Preconditioned 
Conjugate Gradient, Cholesky Conjugate Gradient solvers 
is analyzed during modeling.  
 
System of linear equations 
 

The system of linear equations generated by the finite 
element technique is solved using a direct elimination or an 
iterative method [3]. A direct elimination method is based 
on a Gaussian elimination method, according to which the 
values of the unknown vector of variables { }u  are found in 
the following equation 

 

 [ ]{ } { }FuK = ;  (1) 
 

where [ ]K  – conductivity matrix; { }u  – vector of nodal 
unknown values; { }F  – applied load vector. 

The direct elimination method [3] consists of 
decomposition of the matrix [ ]K  into lower and upper 
triangular matrixes [ ] [ ][ ]ULK = . Then forward and 
backward substitutions using matrixes [ ]L  and [ ]U  are 
made in order to compute the vector { }u , containing the 
values of solution results. 

In case of iterative method [3] the initial guess is 
made for the value { }1u  of the solution vector { }u  and then 
a iterative steps are performed resulting in a sequence of 
vectors { }2u , { }3u , ..., { }nu , such that, in the limit, 
{ } { }uu n =  as n tends to infinity. During the calculation of  
vector { } 1+nu  matrix [ ]K , vectors { }F  and { }u  are used 
from one of the previous iterations. Typically the solution 
converges to within a specified tolerance after a finite 
number of iterations. Further we will present a short 
overview of these methods [3]. 

 
Sparse Direct Solver 

 
Comprehensive description of Sparse Direct Solver 

used in ANSYS/Emag is given in [3]. The linear matrix 
equation (1) is solved by triangular decomposition of 
matrix [ ]K  to yield the following equation: 

 

 [ ][ ]{ } { }FuUL = ;  (2) 
 

where [ ]L  – lower triangular matrix; [ ]U  – upper 
triangular matrix. 

By substituting 
 

 { } [ ]{ }uUw =   (3) 
 

it is possible to obtain { }u  by first solving the triangular 
matrix system for { }w  by using the operation of direct 
insertion of (3) into the (2) equation 

 

 [ ]{ } { }FwL =   (4) 
 

and then vector of unknown quantities { }u  is calculated 
using the back substitution operation on a triangular matrix 
given by: 

 

 [ ]{ } { }wuU = .  (5) 
 

When the matrix [ ]K  is symmetric, the description 
given above could use the substitution: 

 [ ] [ ][ ]TLLK = .  (6) 
 

However, it is modified as: 
 

 [ ] [ ][ ][ ]TLDLK ''= ;  (7) 
 

where [ ]D  – a diagonal matrix. 
The diagonal terms of matrix [ ]D  may be negative in 

the case of some nonlinear finite element analysis. This 
allows the generation of matrix [ ]'L  without the 
consideration of a square root of negative number. Thus, 
equations (2–5) become: 

 

 [ ][ ][ ] { } { }FuLDL
T

='' ,  (8) 
 

 { } [ ][ ] { }uLDw
T'= ,  (9) 

 

 [ ]{ } { }FwL =' ,  (10) 
 

 [ ][ ] { } { }FuLD
T

=' .  (11) 
 

Since the matrix [ ]K  is normally sparsely populated 
with coefficients dominantly located around the main 
diagonal, the Sparse Direct Solver is intended to handle 
only the non-zero entries in the matrix [ ]K . In general, 
during the Cholesky decomposition of the matrix [ ]K  
shown in equation (2) or (8), non-zero coefficients appear 
in matrixes [ ]L  or [ ]'L  at coefficient locations where [ ]K  
matrix had zero entries. By using the Sparse Direct Solver 
method this fill-in of the matrix is minimized by reordering 
the equation numbers in the matrix [ ]K . 
 
Frontal Solver 
 

Comprehensive description of Frontal Solver used in 
ANSYS/Emag is given in [3]. The computer time required 
in order to solve the problem is proportional to the square 
of the mean wavefront magnitude. The wavefront 
magnitude is determined by the order in which the 
elements are arranged. The node numbers of all elements 
are verified in order to determine which element is the last 
to use for each node. Since the overall system of equations 
is formed from the element matrixes, the equations for a 
node which occurs for the last time are algebraically solved 
in terms of the remaining unknown values and eliminated 
from the formed matrix by using the Gauss elimination 
technique. The active equations are represented by: 

 

 k

L

j
jkj FuK =∑

=1

;  (12) 

 

where kjK – stiffness coefficient relating the force at the 
degree of freedom k to the displacement at the degree of 
freedom j; ju – nodal displacement of the degree of 

freedom j; kF – nodal force of the degree of freedom k; k – 
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row number; j – column number; L – number of equations 
(rows). 

To eliminate an equation, for which ki = , the 
equation is normalized in the following way 

 
ii

i
j

L

j ii

ij

K
F

u
K
K

=∑
=1

.  (13) 

 

Equation (13) can be written as: 
 

 

*

1

*
ij

L

j
ij FuK =∑

=

,
 

 (14) 

 

where 
ii

ij
ij K

K
K =* , 

ii

i
i K

F
F =* , iiK – is known as the 

“pivot” [3]. If the absolute value of iiK is sufficiently 
small, it is mathematically equal to zero. This usually 
means the structure is insufficiently constrained. 

Equation (14) is written to a file for later back-
substitution. The remaining equations are modified as: 
 

 **
ijkikjkj KKKK −= ,  (15) 

 

 *
ikikk FKFF −= , (16) 

 

where ik ≠ so that 
 

 *
1

1

*
k

L

j
jkj FuK =∑

−

=

,  (17) 

 

where k varies from 1 to L–1. When the row i is eliminated 
from the equation (17), this procedure is repeated for all 
other equations suitable for elimination. 

The equations for a node which occurs for the first 
time are added to the formed matrix over the course of the 
solution process. So, the formed matrix expands and 
contracts as node make their first and last appearance in 
the element definitions. The varying size of the active 
matrix is considered as the momentary wavefront size. 

When several elements are connected to the same 
node, the degrees of freedom related to these elements 
remain active until the wavefront “passes” all elements 
connected to the node. Degrees of freedom related by 
constraint equations or coupled nodes remain active until 
the wavefront “passes” all elements connected to the 
related degrees of freedom. Master degrees of freedom 
remain active in memory and are not deleted from the 
wavefront. This procedure is extensively described in [3].  
The ideal model size when using Frontal Solver is under 
fifty thousand degrees of freedom, therefore it is not 
suitable for three-dimensional modeling of electronic 
optical system.  
 
Iterative Solvers 
 

The iterative solvers are based on the conjugate 
gradient method. In this case the system of linear equations 
(1) is also solved. In the conjugate gradient method, the 
solution is found as a series of vectors { }ip : 
 

 { } { } { } { }mm pppu ααα +++= K2211 ,  (18) 

 

where m is no larger than the matrix size n.  
The rate of convergence of the conjugate gradient 

algorithm is proportional to the square root of the 
conditioning number of the matrix [ ]K  where the condition 
number of matrix [ ]K  is equal to the ratio of the maximum 
eigenvalue of [ ]K  to the minimum eigenvalue of [ ]K . A 
preconditioning procedure is used to reduce the condition 
number of linear equations (1). In the Jacobi Conjugate 
Gradient algorithm, the diagonal elements of the matrix 
[ ]K  are used as the preconditioner matrix [ ]Q , while in 
the Cholesky Conjugate Gradient and Preconditioned 
Conjugate Gradient algorithms, a more sophisticated 
preconditioner matrix [ ]Q  is used. The conjugate gradient 
algorithm  with preconditioning is widely described in [3]. 

Convergence is achieved when: 
 

 
{ } { }
{ } { }

2ε≤
FF
RR

T
i

T
i ; (19) 

 

where ε  – user supplied tolerance; { } { } [ ]{ }ii uKFR −= , 
{ }iu  – solution vector at iteration i. It is assumed that the 
initial starting vector { }0u  is a zero vector. 
 
Analysis of solver performance  
 

The designed algorithm used to determine solver 
performance is presented in Fig. 1. This algorithm differs 
from earlier algorithms [7,8] in the possibility to select the 
particular solver and also calculation of electric potential at 
specifically selected points of trajectory cylinders is not 
calculated (only values of electric potential at the nodes of 
finite element mesh are calculated).  
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Fig. 2. Sparse Direct Solver performance dependence on the 
number of finite element mesh nodes 
 

In order to determine the performance (solution 
duration) of solvers the electronic optical system model 
containing 394288 tetrahedral finite elements SOLID123 
(546352 nodes) was used. Mesh is generated for one time 
and is used for analysis of performance of all solvers. 

In case of the Sparse Direct Solver the modeling 
performance dependence on the number of finite elements 
(finite element nodes) was also determined (Fig. 2), and in 
case of iterative solvers – the performance dependence on 
the selected tolerance (Fig. 3). 

The personal computer with the following 
characteristics was used for computations: mainboard – 
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Biostar M7VIT Pro; CPU – AMD Athlon XP 2500+ (1.83 
GHz); RAM – 1.5 GB DDR-SDRAM (memory type 
PC3200U and timings 2.5-4-4-8); HDD – WDC 
WD600JB; OS – Windows XP Professional (Win32 x86) 
5.01.2600 (Service Pack 2). Received results are presented 
in Fig. 2 and Fig. 3. 
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Fig. 3. Iterative solver performance dependence on the tolerance 
level 
 

After analyzing solver performance it was found, that 
it is most purposeful to use Preconditioned Conjugate 
Gradient solver to perform the spatial modeling of 
electronic optical system, because it is 5 times faster than 
Sparse Direct Solver, and approximately 7% faster than 
Jacobi Conjugate Gradient and Cholesky Conjugate 
Gradient solvers. 
 
Conclusions  
 

Longest time to solve the system of equations is taken 
when using Sparse Direct and Distributed Sparse Direct 
solvers (approximately five times longer than using 
iterative solvers). 

The performance of iterative solvers Jacobi 
Conjugate Gradient, Cholesky Conjugate Gradient and 
Preconditioned Conjugate Gradient differs marginally, 

approximately by 10%. In this case the selection of solver 
is mainly determined the amount of available memory.  

The defined tolerance has little impact on the 
performance of Jacobi Conjugate Gradient, Cholesky 
Conjugate Gradient and Preconditioned Conjugate 
Gradient solvers. The difference of performances when 
tolerances 10E-6 and 10E-10 are set when using Jacobi 
Conjugate Gradient solver are 15%, Cholesky Conjugate 
Gradient solver – 10%, Preconditioned Conjugate Gradient 
solver – 7%. 

Sparse Direct Solver is most effective to use when the 
number of degrees of freedom is approximately half 
million, and for Jacobi Conjugate Gradient, Preconditioned 
Conjugate Gradient, Cholesky Conjugate Gradient solvers 
this number is approximately ten million degrees of 
freedom. 
 
References 

 
1. John L. Volakis, Chatterjee A., Leo C. Kempbel. Finite 

Element Method for Electromagnetics. – New Jersey: IEEE 
Press, Hoes Lane, 1998. – 360 p. 

2. Moaveni S. Finite element analysis. Theory and application 
with ANSYS. – New Jersey: Prentice Hall, Upper Saddle 
River, 1999. – 528 p. 

3. ANSYS Theory Manual. ANSYS Release 5.7. – SAS IP, Inc. 
– 2001. – 1266 p. 

4. ANSYS Low-Frequency Electromagnetic Analysis Guide.  
ANSYS Release 9.0. – SAS IP, Inc. – 2004. – 402 p. 

5. ANSYS Modeling and Meshing Guide. ANSYS Release 
9.0. – SAS IP, Inc. – 2004. – 276 p. 

6. ANSYS Elements Reference. ANSYS Release 9.0. – SAS 
IP, Inc. – 2004. – 1363 p. 

7. Tarvydas P., Markevičius V., Noreika A. Elektroninės 
optinės sistemos modeliavimas baigtinių elementų metodu // 
Elektronika ir elektrotechnika. – Kaunas: Technologija, 2003. 
– Nr.5(47). – P. 52–55. 

8. Tarvydas P., Markevičius V., Noreika A. Modeling of 
Asymmetric Electronic Optical System // BEC 2004. 
Proceedings. – Tallinn, 2004. – P. 67–70. 

 
Submitted for publication 2006 12 15 

 
P. Tarvydas, A. Noreika. Usability Evaluation of Finite Element Method Equation Solvers // Electronics and Electrical 
Engineering. – Kaunas: Technologija, 2007. – No. 2(74). – P. 13–16. 

Direct and iterative solution techniques of equation systems used in finite element method are analyzed. Comparison of these 
techniques, their advantages and drawbacks are characterized and recommendations for their applications are presented. Methods are 
analyzed by performing the modeling of the symmetrical electronic optical system using software package ANSYS/Emag. Electronic 
optical system modeling algorithm and technique was designed. After the modeling the performances of equation system solution 
methods were compared against each other. Ill. 3, bibl. 8 (in English; summaries in English, Russian and Lithuanian). 
 
П. Тарвидас, А. Норейка. Оценка возможностей применения методов решения систем уравнений, используемых в 
методе конечных элементов // Электроника и электротехника. – Каунас: Технология, 2007. – № 2(74). – С. 13–16. 

Анализируются прямые и итерационные методы решения систем уравнений, используемые в методе конечных элементов. 
Представлено сравнение различных методов, обсуждаются их преимущества и недостатки, представлены рекомендации для их 
использования. Методы анализируются, применяя моделирование симметрической электронной оптической системы, 
используя  программный пакет анализа методом конечных элементов ANSYS/Emag. Создан алгоритм и методика 
моделирования электронной оптической системы. После моделирования было сравнено между собой быстродействие 
различных методов. Ил. 3, библ. 8 (на английском языке; рефераты на английском, русском и литовском яз.). 
 
P. Tarvydas, A. Noreika. Baigtinių elementų metode taikomų lygčių sistemų sprendimo metodų pritaikymo galimybių 
įvertinimas // Elektronika ir elektrotechnika – Kaunas: Technologija, 2007. – Nr. 2(74). – P. 13–16. 

Nagrinėjami baigtinių elementų metode naudojami tiesioginiai ir iteraciniai lygčių sistemų sprendimo metodai. Pateikiamas įvairių 
metodų palyginimas, apibūdinamos jų teigiamybės ir trūkumai, pateikiamos jų taikymo rekomendacijos. Metodai analizuojami atliekant 
simetrinės elektroninės optinės sistemos modeliavimą baigtinių elementų analizės programa ANSYS/Emag. Sudarytas elektroninės 
optinės sistemos modeliavimo algoritmas ir metodika. Atlikus analizę palyginta įvairių metodų greitaveika. Il. 3, bibl. 8 (anglų kalba; 
santraukos anglų, rusų ir lietuvių k.). 


