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1Abstract—In this paper we re-consider the problem of
radiation from a vertical short (Hertzian) dipole above flat
lossy ground, which represents the well-known in the literature
‘Sommerfeld radiation problem’. Particularly, we expand on
the problem’s solution in the spectral domain, which ends up
into simple one dimensional (1-D) integral expressions for the
received EM field and represent the exact EM solution to the
aforementioned problem. The advantage of the derived
expressions is based on the fact that they can be analytically
evaluated through the use of the Stationary Phase Method
(SPM), which however is valid in the high frequency regime.
To our knowledge, the literature lacks specifying the exact
frequency range over which the SPM method is applicable.
Hence, in this paper numerical integration on the above
mentioned integral expressions is applied and the results are
compared with those obtained through the SPM. These
comparisons are then used as the basis of determining the
frequency limits of applicability of the SPM solution. In fact it
is shown that due to the specific peculiarities of the integrated
expressions, which possess certain singularities, it is often
preferable to use the SPM method as the best estimate for the
received signal level, especially for most practical frequencies
of interest in the area of wireless telecommunications.
Additional practical implications that these findings suggest, as
well as further research to be triggered, as a result of the
overall progress that has been made by our research group so
far on the specific subject, are provided as well.

Index Terms—Sommerfeld radiation problem, spectral
domain solution, Stationary Phase Method (SPM), high
frequency approximation, numerical integration.

I. INTRODUCTION

The so-called ‘Sommerfeld radiation problem’ is a well-
known problem in the area of propagation of
electromagnetic (EM) waves above flat lossy ground for
obvious applications in the area of wireless
telecommunications [1]–[5]. The classical Sommerfeld
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solution to this problem is provided in the physical space by
using the so-called ‘Hertz potentials’ and it does not end–up
with closed form analytical solutions. K. A. Norton [6]
concentrated in subsequent years more in the engineering
application of the above problem with obvious application
to wireless telecommunications, and provided approximate
solutions to the above problem, which are represented by
rather long algebraic expressions for engineering use, in
which the so-called ‘attenuation coefficient’ for the
propagating surface wave plays an important role.

In this paper, the authors expand on their existing
research work regarding the solution of Sommerfeld’s
radiation problem in the spectral domain. Particularly, in [7],
[8] the authors demonstrated the fundamental integral
representations, for the received EM field for the
aforementioned problem. Then in [9]–[11], the authors
suggested the use of the Stationary Phase Method (SPM
method [12]), with which novel closed-form analytical
expressions are derived for the calculation of the EM field in
the high frequency regime. At those papers detailed
comparisons between the proposed SPM method and
Norton’s solutions [6] showed very good agreement results.

One of the main questions that arise naturally regarding
the validity of the SPM method, an inherently high
frequency technique, is the frequency range where it can be
securely applied. Hence, in this paper, appropriate
simulations are run for various carrier frequencies. These
simulations compare the estimated received EM field at an
observation point above flat and lossy ground (particularly
only the scattered field is calculated since the Line of Sight
field is easily and analytically derivable), under two
approaches: (a) SPM method [9]–[11] and (b) Numerical
integration of the corresponding integral representations.
The results obtained are interesting in that they favour the
use of the SPM method in a wide frequency range.
Particularly, most widely used frequencies in contemporary
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wireless communication systems appear to belong into this
‘SPM applicability range’ and this yields important
inferences as explained in Section V below. Also note that
in the rest of the paper only the expressions for the Electric
field are shown. Similar expressions hold for the Magnetic
fields, as well [11].

II. GEOMETRY OF THE PROBLEM

The geometry of the problem is given in Fig. 1. Here a
Hertzian (small) dipole with dipole moment p directed to
positive x axis, at altitude x0 above the infinite, flat and lossy
ground, radiates time-harmonic electromagnetic (EM)
waves at angular frequency ω = 2πf. Here the relative
complex permittivity of the ground is

0 0/ / ,r r i         σ being the ground
conductivity, f the frequency of radiation and

12
0ε = 8,854 × 10  F/m is the absolute permittivity in

vacuum or air. Then the wavenumbers of propagation in the
air and lossy ground, respectively, are given by the
following equations:

01 1 1 1 0 0ω ω ε μ ω ε μ ,k c   (1)

02 2 2 2 01 0ω ω ε μ ε i(σ / ωε ).rk c k    (2)

Fig. 1. Geometry of the problem.

III. INTEGRAL REPRESENTATION FOR THE RECEIVED
ELECTRIC FIELD IN THE SPECTRAL DOMAIN

Following [7], [8] the following integral representation
for the space wave regarding the electric field above the
ground level (x > 0) is derived:
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and H0
(1) is the Hankel function of first kind and zero order.

Moreover, ELOS is the Line of Sight (LOS) electric field
vector, which as mentioned above, is not shown in our
simulations, since it can be directly evaluated with analytic
expressions [10].

IV. ANALYTICAL CLOSED-FORM EXPRESSIONS FOR THE
SCATTERED ELECTRIC FIELD OBTAINED THROUGH THE

APPLICATION OF THE STATIONARY PHASE METHOD (SPM)
Application of the SPM method on (3) and (4) above

leads to the following analytic expressions for the EM field
in the higher half space (x > 0) [10], [11]

 1

ρ 1 0

1

ρ 1 0

1 2 3 2
ρ1s

0 1 21 2 010 0

ρ κ ( )2 1 1 2

2 1 1 2

01
1 ρ ρ

0
ρ κ ( )2 1 1 2

2 1 1 2

1 ρ ρ

κ

4πε ε ρ
ε κ ε κ
ε κ ε κ

cosφ
ˆ ˆ(κ )

4πε ε (A'A)
ε κ ε κ
ε κ ε κ

ˆ ˆ(κ ),

SC

s s

s s

s
x

r

ik i x xs s

s s

s s x
r

ik i x xs s

s s

s s x

kpE
kx x

e e

pk
e k e

e e

e k e







 



   



   


   



  (5)

where (Α΄A) is the distance between the image point and the
observation point, shown in Fig. 1. Moreover, in (5) above,
the following expressions hold:
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with kρs being the stationary point obtained from the SPM
method and φ the angle shown in Fig. 1, also known in the
literature as the ‘grazing angle’ [13].

V. NUMERICAL RESULTS: COMPARISON OF SPM WITH
NUMERICAL INTEGRATION TECHNIQUES

In this Section the results obtained using the analytical,
closed-form formulas of the SPM method, described in
Section IV above, i.e. (5), are compared with the
corresponding results obtained by numerically evaluating
the corresponding integral expression of (3), given in
Section III. The whole set of simulation parameters, used in
this problem, are summarized in Table I.

TABLE I. SIMULATION PARAMETERS.
Symbol Description Value

fmin Minimum Frequency 10 KHz
fmax Maximum Frequency 1 GHz
x0 Height of transmitting dipole 60 m
x Height of observation point (receiver) 15 m
I Current of the radiating Hertzian dipole1 1 A

2h Length of the Hertzian dipole2 0.1 m
εr Relative dielectric constant of ground 20
σ ground conductivity 0.01 S/m

Notes:
1 Relation between current I and dipole moment p: I(2h) = iωp, where ω = 2πf and i
is the unit imaginary number
2 much smaller than the wavelength λ = c/f in both cases
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Fig. 2. Scattered electric field values as a function of horizontal distance ρ
between transmitter and receiver calculated by the SPM method and
numerical integration techniques.

As mentioned in Section I, the objective of this
comparison is to identify the frequency ranges where the
SPM technique, which is an inherently high frequency
method [12], can be effectively applied. For that purpose,
Fig. 2, below, provides indicative results for the scattered

electric field of (3) and (5), as explained above, for a wide
range of frequencies of interest (corresponding results for
the magnetic field are very similar).

In order to evaluate the results of Fig. 2, the following
remarks, which essentially summarize the simulation
procedure, must be made:
 The estimation of the integral expression of (3) was
performed through the adaptive Simpson’s algorithm
[14]. The error tolerance for convergence was set to 10–6.
Moreover, to mitigate the ‘small scale’ oscillating
behavior of the resulting graphs, which is an outcome of
the fact that the integrated expressions consist of complex
numbers of fast-varying phases, a typical three sample
smoothing (averaging) was applied, where appropriate.
 Careful examination of (3) reveals the fact that there
exists a singular point at κ1 = 0, that is at kρ = k01 and
hence it must be excluded by a sufficient range around
k01, for the numerical integration algorithm to converge.
Our tests, showed that this range needs to be no less than
5×10–5 times the upper value of kρs, which is k01

[according to (6) kρs < k01]. However, this indicates that a
segment around the stationary point is also excluded from
the calculation. The inferences for this are discussed
below.
 Note that the excluded interval of integration around the
singular point, k01, is shown in Fig. 2, where min(krs-- >
k01) and max(krs-- > k01) denote the minimum and
maximum distance between kρs and k01 respectively (see
labels in respective diagrams). In the same figure, the
corresponding kρs values, which depend on horizontal
distance ρ, as evident from (6), are shown as well. This is
shown in order to give an indication of the range that was
excluded, around the stationary point kρs, regarding the
calculation of the integral expression.
 Also note that although point kρ = 0 appears to be
another possible singular point, in the integral expression
of (3), being the zero argument point of the Hankel
function, in fact this is not the case due to the presence of
the kρ

2 and kρ
3 factors in the integrands. Indeed, one can

easily show that: kρ
2

·H0
(1)(kρ·ρ) → 0 as kρ→ 0

Examining the curves of Fig. 2, it is evident that for
frequencies of about 100 KHz and above the results taken
through the numerical integration approach underestimate
the received signal level compared with the SPM method.
This is related with the nature of the SPM method, which
indicates that for large frequencies the integral expression
can be asymptotically approximated by taking into
consideration only the contributions of the area around the
stationary point [12]. However, as mentioned above, when
numerically evaluating the integral expression of (3), a
sufficiently large interval around k01 has to be excluded. In
most cases, this interval overlaps with the stationary point,
which means that a significantly contributing part in the
integral calculation is missed.

On the contrary, regarding the last curve of Fig. 2 (f =
10 KHz), it is, in this case, the SPM method which seems to
underestimate the EM field values (we also reach the same
findings for f < 30 KHz). Indeed, for such low frequencies,
the large argument approximation of the SPM method
cannot be invoked, in other words, (5) through (7) are not
accurate at all. It is still necessary to exclude a range around
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point kρ = k01, for the numerical integration algorithm to
converge, however this time this range is not a major
contributor to the overall outcome.

The results shown in Fig. 2, above, have direct practical
implications when considering the design of efficient radio
network planning simulation tools, in which case the
appropriate computation method for estimating the signal
level must be used. These conclusions are summarized in
Table II.

TABLE II. SELECTION OF EM FIELD CALCULATION METHOD.
Method Suitability

SPM vs. Numerical Integration(NI)

Frequency Range ([13]) Suitable
Method Observation

Medium Frequency (MF)
range and above

(>300 KHz)
SPM

SPM provides more accurate
results for the received signal level
and hence should be the selection
of choice for prediction purposes.

Low Frequency (LF)
range

(30 – 300 KHz)
SPM and NI

The results given by the two
methods seem comparable and our

research group proposes that a
closer examination and potential

fine-tuning of the numerical
integration algorithm is necessary,
before reaching ‘safe’ inferences

(see Section VI below).

Very Low Frequency
(VLF) range
(<30 KHz)

NI

Numerical Integration is more
suitable. SPM fails and the

estimation must be based on
numerical integration techniques.

VI. CONCLUSIONS

In this paper we re-examined the solution of
Sommerfeld’s radiation problem in the spectral domain and
we studied the practical aspects that this novel exact
electromagnetic method gives in the determination of the
received signal level. As mentioned above, the resulting
integral expressions expedite the simulation process and
allow direct comparisons between numerical integration
techniques and the analytic expressions obtained through
application of the SPM.

Particularly, in this paper, we explained why the proposed
SPM method is a robust technique, since it provides more
accurate results than common numerical integration
methods for most frequencies of interest (at least above
300 KHz) in the area of wireless telecommunications and
hence can be the basis for an efficient simulation tool for
radio signal propagation.

Corresponding research in the near future by our research
group will concentrate on the solution of Sommerfeld’s
radiation problem, but this time for a horizontal dipole.
Furthermore, we intend to calculate the received EM field,
above or below the ground, for any frequency of the
radiating dipole, in an exact and analytical manner [15]. In
this context, the behavior of surface waves will become
evident through the use of the residue theorem, when
applied to (3) above, in a way similar to [5].

Finally, in the near future our research group will focus
on the design of a software product for accurate prediction
of pass loss in different types of environments. The above
software tool will be based on the exact electromagnetic
(EM) method proposed in this paper, as well as in [9]–[11],
and therefore it is expected that it will exhibit important
advantages over previously developed corresponding

software tools. Some of these advantages might include
accuracy, speed, efficiency and low complexity, since the
various calculations will be based on closed form analytical
expressions, instead of resource starving and time
consuming numerical methods. We also intend to fine-tune
the numerical method presented in this paper (e.g.
experiment with convergence tolerances), as well as to test
alternative numerical integration algorithms (e.g. the
‘adaptive Lobatto’ algorithm [14] could be examined) and to
use the most appropriate as the back-up method in situations
where the SPM is not sufficient. In this framework,
comparisons with existing commercial software tools,
implementing various empirical models, can also be
performed [16].
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