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1Abstract—Robustness of the differential pulse code
modulation system with the first and second order predictor is
considered in this paper. Special focus is on a robust stability of
prediction filter with regard to predictor coefficients.
Generalization of robustness in classical sense is performed and
suitable relations for calculating probability of robustness are
derived. The proposed method for robustness estimation is used
for the first and second order prediction filters in the case of
speech signal.

Index Terms—Gaussian distribution; probability density
function; pulse modulation; robustness.

I. INTRODUCTION

Differential pulse code modulation (DPCM) is one of the
most effective techniques for signal processing and
transmission widely used in telecommunications, speech [1],
[2] and image coding [3], [4], and medical research [5]–[7].
The transmission system based on DPCM is a nonlinear
feedback system and as such is suitable for the analysis in
control systems.

Linear prediction [8], [9], where the prediction of the
current sample is calculated as the linear combination of the
previous samples, is the basis of a DPCM system. Therefore
a linear prediction (recursive) filter with predictor is, beside
quantizer, the main part of each DPCM system. Sensitivity
analysis for the prediction filter is given in [11], while
stability analysis is performed for the first-order predictor
[12] and second-order predictor [13].

Beside stability and sensitivity, robustness is also
important property of each real system. An ability of a
system to remain stable in the case of perturbations, system
parameters variations, etc., is important system quality in
control sense [14]. In the case of parametric robustness, the
system is robust if it remains stable after perturbations in
values of system parameters within certain boundaries [15].

Some robustness analyses of predictors in regard to
transmission error have already done in [16]. In this paper
we will perform parametric robustness in regard to predictor
coefficients. First, we will give a classical robustness
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approach and, then, we will propose a generalization
adopted for the real technical system with stochastic
parameters.

Namely, in practice each system is in some way imperfect
[17]–[21]. It means that system parameters are stochastic
variables (not deterministic). In this case, classical methods
for stability analysis are not applicable because we only
know with which probability the system is robustly stable. In
this paper, robustness probability estimation method is
proposed and verified for the commonly used first-order and
second-order predictor.

The rest of the paper is organized as follows. In
Section II, DPCM system with linear predictor is described.
Robustness analysis of prediction filter with experimental
results for the first-order and second-order predictor is given
in Section III. In Sections IV and V, we gave conclusions
and possibility for further development in this area.

II. DPCM SYSTEM – CONCEPT OF LINEAR PREDICTION

The DPCM system, shown in Fig. 1, consists of encoder
(quantizer, inverse quantizer and predictor) and decoder
(inverse quantizer, predictor). The system is suitable for
digitalization and transmission of highly correlated signals.
This system quality is provided by a prediction filter in the
feedback loop. The prediction filter estimates actual sample
value based on one or more previous samples of input
(source) signal. A number of previous samples, used for
prediction, determines the predictor order, k [1].

Fig. 1. Block scheme of DPCM system.
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The main concept of the DPCM system is to form the
difference nd between the current sample nx and its
predicted value ˆnx . Quantization error ne occurs due to
quantization of the difference nd (Fig. 1), [1], [7]. For the
linear predictor, the predicted value ˆnx is calculated as a
linear combination of the previously quantized reconstructed
samples n iy  . The functioning of the k -th order linear
predictor is described with the following equation

1
ˆ ,

k
n i n i

i
x a y 


  (1)

where , 1,2,...,ia i k are the predictor coefficients.
DPCM systems are nonlinear feedback systems (quantizer

is a nonlinear element). Robustness analysis of the whole
DPCM system is very difficult. Quantizer has characteristic
with saturation, i.e. it has limiter's behaviour [22]. It means
that when input signal is increasing, quantizer gain is
decreasing, which finally leads to better robust stability of
the whole system. Hence, quantizer could have only positive
effect on robust stability, i.e. robust stability of prediction
filter is sufficient condition for robust stability of the whole
system.

III. THE ROBUSTNESS STABILITY OF THE LINEAR
PREDICTION FILTER

Analysis of prediction filter robustness is very important
during the design of the system. It is well known that the
predictor is a significant part of any DPCM/ADPCM
(adaptive DPCM) system and its coefficients have a big
effect on the system performances.

First, we will derive mathematical background for the
robustness analysis of the prediction filter, in general.

Relation for k -th order predictor given by (1), in z-
domain has the following form
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 is the transfer function of the

predictor.
Transfer functions of the prediction filter in the encoder

and decoder, respectively, have the following forms:
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Prediction filters are robustly stable if all the poles of the

transfer functions (3) and (4) are inside the unit circle, i.e., if

the characteristic equation:
1

1 0
k i

i
i

a z

  (the same for the

both filters) has all its zeroes inside the unit circle for all
values of predictor coefficients. The previous characteristic
equation can be written as

1
0.

kk k i
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z a z 


  (5)

Stability conditions of the system described with
characteristic equation (5) can be determined by several
stability criterions [13]. Derivation of stability condition
using Routh-Hurwitz criterion is given in Appendix A with
special focus on the first- and second-order systems.

Now, we will consider robust stability of the prediction
filter. We will use Kharitonov’s theorem for estimation of
parametric robustness [23].

The goal of this paper is to consider the robust stability of
the prediction filter with commonly used first and second
order predictor, although the proposed method is also
applicable for higher order predictors. The first- and second-
order predictors are the most used in practice, because the
prediction gain often gets into saturation for the higher
orders [1], [2].

A. Robustness of the First-Order Prediction Filter
The characteristic equation (5) for the first order predictor

has the following form:

0 1

0
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a
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The set (family) of four characteristic polynomials using
Kharitonov’s theorem is:
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We can notice that in this special case (for the first order),
we actually have only two polynomials because 0 1a  :

 
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1 1
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,
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The prediction filter is stable if the roots of both
polynomials are inside unit circle, i.e.,:  1 11 , 1a a   .

Classical robustness analysis of the first-order prediction
filter is finished because we suppose that predictor
coefficients have exact values all the time, i.e. they are
deterministic.

In practice, DPCM system and predictor as its part, are
imperfect and predictor coefficients have stochastic
parameters with normal distribution [17], [19], [20], [24].
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We will estimate robust stability for the obtained values of
predictor coefficients. We analyze recorded speech signal of
10200 samples with different frame lengths

10, 20, 50, 100, 150, 200M  samples. For the obtained
values of predictor coefficients 1a , we calculated mean
values and standard deviations for all values of M (Table I).

TABLE I. THE MEAN AND STANDARD DEVIATION OF THE FIRST
ORDER PREDICTOR COEFFICIENT FOR DIFFERENT FRAME

LENGTHS.
M[sample] 10 20 50 100 150 200

a1m 0.803 0.874 0.917 0.928 0.932 0.929
σ1 0.126 0.089 0.067 0.064 0.066 0.061

From Table I, we can see that predictor coefficient has the
maximal value for 150M  and minimal value for 10M  ,

so 1 10.932, 0.803m ma a  .

Appropriate probability density functions [19], [20] are:

2
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where 1ma and 1 are the mean value and standard

deviation for maximal value of predictor coefficient 1a ,
respectively; while 1ma and 1 are the mean and standard

deviation for minimal predictor coefficient 1a , respectively.

We should note that 1 and 1 are not maximal and

minimal values of standard deviation.
Now, we can estimate robust stability as follows:
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Remark 2: Integrals in the denominators (11) and (12)
present total probability and they are equal to 1.

After solving integrals, we obtain the following values for
robustness probability: 1 0.864P  and 2 0.941P  .

The total robustness for the first-order prediction filter is:
1 2 0.813P P P   .

B. Robustness of the Second-Order Prediction Filter
Beside first-order predictors, the most common used

predictors in DPCM systems are of the second-order. By

using proposed method we can also estimate robustness for
the prediction filter with the second-order predictor.

The characteristic equation (5) for the second-order
predictor has the following form

2
1 2 0.z a z a   (13)

Now, the set of four characteristic polynomials is:
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The stability region, S2, for the second-order prediction
filter in parametric space  1 2,a a is given by conditions,
(see Appendix A):

1 2

1 2

2

1 0,
1 0 ,

1.

a a
a a

a

  
   
  

(15)

Sufficient condition for robust stability is that pairs of
coefficients in all four polynomials (7) satisfy inequalities
(15). However, predictor coefficients are stochastic and we
performed experiments for the same speech signal and also
repeated experiment for the same values of frame length as
in the case of the first-order predictor. Obtained values for
the means and standard deviations of predictor coefficients
are given in Table II.

TABLE II. THE MEAN AND STANDARD DEVIATION OF THE
SECOND ORDER PREDICTOR COEFFICIENTS FOR DIFFERENT

FRAME LENGTHS.
M[sample] 10 20 50 100 150 200

a1m 0.988 1.131 1.288 1.385 1.431 1.438
σ1 0.224 0.220 0.211 0.203 0.191 0.205
a2m -0.230 -0.293 -0.405 -0.493 -0.536 -0.546
σ2 0.197 0.211 0.211 0.204 0.180 0.192

From Table II, we can see that predictor coefficient 1a
has the maximal value for 200M  and minimal value for

10M  , predictor coefficient 2a is maximal for 10M 

and minimal for 200M  , so: 1 11.438, 0.988,m ma a 

2 20.230, 0.546m ma a    .

Appropriate probability density functions for the
polynomial R1 is
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where 1ma and 1 are the mean value and standard

deviation for minimal value of predictor coefficient 1a : 1a ,

respectively; and 2ma and 2 are the mean and standard

deviation for minimal value of predictor coefficient 2a : 2a ,

respectively. In the same way, we form probability density
functions for another three characteristic polynomials,

 2 1 2: ,R f a a ,  3 1 2: ,R f a a and  4 1 2: ,R f a a .

Now, we can estimate robust stability. For R1 we obtain
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In the same way, robustness for other three characteristic
polynomials are:
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where S2 is defined with (15).
We obtain the following values for robustness probability:

1 0.962P  , (21)

2 0.641P  , (22)

3 0.791P  , (23)

4 0.232P  . (24)

The total robustness for the second-order prediction filter
is

4

1

0.113i
i

P P


  . (25)

As we can see, the prediction filter is robustly stable with
certain probability, unlike the ideal case when the predictor
coefficients are perfectly adjusted. In this case total
probability is low (25). The robustness probability decreases
when the mean values of predictor coefficients, located
inside stability region S2, approach the bounds of region S2.
This decline is even more pronounced when the mean values
of predictor coefficients, located outside stability region S2,
move away from region S2, as in this case.

Remark 3: The robustness analysis presented above is the
generalization of the classical robustness approach. In
deterministic case ( 0  ) we obtain value of robustness

probability equal to 1 (stable in the sense of robustness) or 0
(unstable). In the case of the first-order predictor probability
of robustness is 1, but in the case of the second-order
predictor it is 0 because the values of predictor coefficients
for R4 do not satisfy conditions (15), so appropriate
probability 4P is low (24).

IV. CONCLUSIONS

Robust stability analysis of the prediction filter with the
most commonly used first- and second-order predictors was
given in this paper. According to previously derived
relations for stability region with respect to predictor
coefficients, we proposed a method for determining robust
stability of the prediction filter for concrete input signal and
experimentally obtained values of predictor coefficients.
Finally, we generalized the robustness analysis for a real
system which is not perfect, i.e., when DPCM predictor
coefficients are not perfectly adjusted (their values are
normally distributed around the projected value). Robustness
estimation was performed for the different frame lengths,
and we calculated the probabilities which allow for the
prediction filter to be robustly stable. This is a very
important fact during the design of DPCM system. The
proper selection of predictor coefficients could directly
increase the system stability, leading, in that way, to even
better performances of DPCM system.

V. FUTURE WORK

The proposed method for robustness estimation could be
applied to prediction filter with higher order predictors, also.
Kharitonov's theorem, used in this paper, is especially
efficient in higher order systems for stability analysis. The
problem which occurs is solving multidimensional integral
needed for probability of robustness calculation. It is very
difficult to determine the limits of integration area for higher
order predictors. That is the reason why we would use
Monte Carlo method for integration and try to obtain values
for robustness probability with desired accuracy.

APPENDIX A
In order to obtain stability condition for the system

described with (5), herein, we use Routh-Hurwitz stability

criterion. The bilinear transformation 1
1

sz
s





is a mapping

unit circle inside the z-plane into the left half of s-plane.
After using the bilinear transformation onto (5), we obtain

1
1 1 0... 0,k k

k kb s b s b s b
     (A1)

where 0 1, ,..., kb b b are functions of predictor coefficients

1 2, ,..., ka a a , i.e.:    0 0 1 1,..., ,..., ,...,k k k kb a a b a a   .

Applying the Hurwitz criterion, the stability region nS of
difference equation (A1) is obtained. The system (5) is
stable if all the zeroes of the characteristic equation (A1) are
inside the left half of s-plane. We form Hurwitz determinant
for (A1):
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The necessary and sufficient condition for the stability of
(5) is that all diagonal sub-determinants , 1,...,iD i k , are
greater than zero:
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The stability region of (5), kS , can be obtained by
inequalities above for the first-order system up to k -th order
system.

In the case of the first-order system, the stability region S1

is given by the

11 1.a   (A4)

For the second-order system, the stability region S2, in the
parametric space 1 2,a a is given by conditions:
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