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1Abstract—Our research was oriented to develop
technologies for independent daily life assistance of elderly or
sick persons and to improve the quality of human life. We
designed a complex assistive system that can learn and adapt
due to the uses of artificial neural networks (ANN). This paper
presents the system developed for human activity and health
parameters monitoring (temperature, heart rate, acceleration)
and focuses on studies and results obtained on arm posture
recognition, body posture recognition and usual activities
recognition like: lying on various sides, sitting, standing,
walking, running, descending or climbing stairs etc. For
pattern recognition from the possible biologically inspired
algorithms we opted for the ANNs. One direction of research
was the design and test of several Matlab ANN models in order
to find the best performing architecture. Another research
direction was related to the necessary preprocessing of raw
data aiming to have a better recognition rate. We find that
standard deviation could be used with very good results as a
supplementary input data for neurons. We optimized the
number of sensors and their placement in order to obtain the
best trade-off between recognition rate and the complexity of
the recognition system.

Index Terms—Activity recognition, adaptive systems,
artificial neural networks, assisted living, e-health, patient
monitoring, pattern recognition, wearable computers.

I. INTRODUCTION

The world’s population is aging and this trend increases
the costs of social care and hospitalization. To reduce these
costs is desirable to ensure the conditions for the elderly to
remain in their preferred familiar environment. For this to be
possible, intensive researches are made worldwide to ensure
continuous monitoring of the health and activity performed
by elderly at home and to detect in early stages abnormal
situation [1]–[6]. Our research is part of this trend, to
develop technologies for independent daily life assistance of
elderly or sick persons and to improve the quality of human
life using Internet of things (IoT) techniques [7]. This is
complex assistive system that can learn and adapt due to the
uses of neural networks. These R&D activity includes
several topics:

1. A smart and assistive environment that allows
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environmental parameters monitoring and control, and
related to this, indoor localization using the wireless
sensor network and Wi-Fi infrastructure;
2. Design and test of a human activity and health
parameters monitoring device;
3. Human activity and health status recognition using
artificial neural network modelled in Matlab. Related to
the artificial neural network simulations we have
developed our feed forward ANN simulator [8];
4. Development of a real time activity recognition system;
5. An assistive/telepresence robot, together with assistive
Android applications.
For activity and health state recognition we have

developed several modules for vital parameters monitoring
(temperature, heart rate, acceleration) [9], [10].

The acquired data is used to train a neural network that
allows recognition of the activity or the health status of the
patient and trigger alert signals in case of unusual state
detection. We designed and simulated in Matlab the
recognition systems for arm posture, body postures and
simple activities, like standing, sitting, walking, running, etc.
The recognition rate of the body postures was over 99 % on
the data sets used for training [10]. We used the FFT
transform to determine the stepping rate in walking and
running activities as the most dominating frequency in the
spectrum of the acceleration signal [11]. We also
implemented and tested a real time recognition system using
Raspberry Pi mini-computer [12].

II. HUMAN ACTIVITY AND HEALTH PARAMETERS
MONITORING SYSTEM

We started the development of the prototypes using off
the shelf modules in combination with modules developed
by us. In the beginning we used the Chronos watch from
Texas Instruments (TI) as acceleration data source combined
with a chest belt from BM Innovations as heart rate data
source. The receiver were built-up from a ChipKit Max32, a
Wi-Fi shield and a communication shield that holds the BM
receiver and the TI access point.

The assemble implements three different wireless
protocols: SimpliciTI for communication between Chronos
watch and its access point, BlueRobin for communication
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with the heart rate belt and WI-FI for communication with
the gateway unit.

Fig. 1. Activity/health monitoring system.

A newer version of the communication shield that was
developed could receive acceleration data from 2 or three
Chronos watches, a heart rate monitor chest belt and has an
incorporated Bluetooth module (Fig. 1.). Also the shield
holds an SD card interface for storing the received data and
a RTC module for time stamping the received data (Fig. 2.).
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Fig. 2. Activity monitoring system.

Latter we also designed a wearable watch sized, low
consumption, acceleration sensor tag (Fig. 3.). It sends the 3
axis acceleration data of the body part on which is placed.
The device is composed by an ADXL350 acceleration
sensor from Analog Devices, a CC2541 low power SoC for
Bluetooth low energy (BLE) applications, from Texas
Instruments and a TPS61220 Step-Up (Boost) converter.
The tag is powered by a single coin cell battery (CR2032).

(a)                                        (b)
Fig. 3. Acceleration sensor tag.

We made experiments related with the optimal number of
sensors required and their optimal placement.

III. HUMAN ACTIVITY AND HEALTH STATUS RECOGNITION

Our research related to activity recognition were
conducted in parallel in several directions. One of the
direction was the development of a Matlab model of activity
recognition system that use artificial neural network in order
to recognize activity or health status of the patient and
trigger alert signals in case of unusual state detection.

Another direction was the development of hardware
implemented real-time recognition system. Data provided by
data acquisition system were used, on the one hand to train
the artificial neural network and on the other hand to
recognize the activities or health status. We modelled in
Matlab several recognition systems for arm posture, body
postures and for usual activities, like: lying on various sides,
sitting, standing, walking, running, descending or climbing
stairs, etc.

The recognition system should use an algorithm that is
capable to learn, generalize and adapt and also to tolerate the
inherent errors (noise). From the possible biologically
inspired algorithms we opted for the artificial neural
networks. In the process of ANN design, the number of input
neurons is given by the number of input data channels and
the number of output neurons is given by the number of
activities to be recognized. Finding a neural network model
with good performance for a given application which is also
easy to implement in hardware is not exactly an easy task.
Only after several simulations of different ANN models we
have opted for a Feed-Forward Backpropagation (FF-BP)
ANN that give good results and also is relatively easy to
implement in hardware using microcontrollers or FPGAs
[10]–[13]. We have made many simulations in order to find
the optimal number of hidden layers and number of neurons
per hidden layer(s). Also we conducted studies regarding the
proper activation function and best performing training
function. We concluded that good results could be obtained
with two-layer FF-BP network, with sigmoid activation
function on both the hidden and the output layers. We have
chosen Levenberg-Marquardt training method because on
the one hand it is the fastest backpropagation algorithm
offered by Matlab and on other hand it gives goods results.
For performance evaluation we used the mean squared error
(MSE) function.

A. Arm Posture Recognition
The first recognition experiments were made for 6 arm

postures. Acceleration data are supplied by TI Chronos
smart watch. The ANN model is presented in Fig. 4. The
recognition rate was 100 % on the data used for training.

Fig. 4. ANN used for arm posture recognition.

B. Body Posture Recognition
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Fig. 5. ANN output for the 5 body postures.
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The next step toward activity recognition was the
recognition of 5 body postures. We defined the 5 postures:
sitting, prone, supine, left lateral recumbent and right lateral
recumbent. As acceleration data source we used the Chronos
watch fixed on chest. We have modelled an ANN with 10
neurons on hidden layer and 5 neurons on the output layer.
The recognition rate was 99.96 %, MSE = 3.6747e-004.

C. Activity Recognition
The main research activity was related to activity

recognition and was conducted in several direction. We have
established 17 common activities to be recognized (Table I).

TABLE I. ACTIVITIES TO BE RECOGNIZED.
1. Standing, 10. Left bending

2. Sitting 11. Right bending
3. Supine 12. Squats
4. Prone 13. Standing up/Sitting down

5. Left lateral recumbent 14 .Falls
6. Right lateral recumbent 15. Turns left and right

7. Walking 16. Climbing stairs
8. Running 17. Descending stairs

9. Bending forward Transitions

Using a 27 samples/second rate we acquired 600 samples
for each activity, from three acceleration sensor placed on
the chest.

One direction of research was the design and test of
several Matlab ANN models for activity recognition in order
to find the best performing architecture, as reported in [10].
Using a two layer architecture we obtained a recognition rate
above 95 %.

Another research direction was related to the necessary
preprocessing of raw data aiming to have a better
recognition rate. As it is presented in the literature, the data
can be preprocessed to obtain new features as Mean value,
Variance, Energy, Correlation coefficients, Frequency-
Domain Entropy, Log FFT Frequency Bands, etc. [14]–[19].
After several simulations we find that the standard deviation
could be used with very good results as a supplementary
input data for the neurons. In the training phase of the ANN
we tried to calculate the standard deviation over all the
samples belonging to an activity (row 2 in Table I.) or over a
window with different width (rows 3-6 in Table II.). X-Acc,
Y-Acc. and Z-Acc. represent the row acceleration data while
X+Y+Z-Acc. is the sum. Std_w600(X+Y+Z-Acc.) is the
standard deviation over all samples belonging to one activity
while Std_w50(X+Y+Z-Acc.) is the standard deviation over
a window of 50 samples. The difference between rows 3-6
consist in the threshold level (0.5, 0.6, 0.7 and 0.8) for the
step activation function used in the output layer. The results
are shown in Fig. 6.

TABLE II. RECOGNITION RATES AS FUNCTION OF INPUTS.
ANN input data

1 X-Acc, Y-Acc, Z-Acc, X+Y+Z-Acc 95.44 %
2 X-Acc, Y-Acc, Z-Acc, X+Y+Z-Acc, Std_w600(X+Y+Z-Acc) 96.28 %
3 X-Acc, Y-Acc, Z-Acc, X+Y+Z-Acc, Std_w50(X+Y+Z-Acc)1 98.06 %
4 X-Acc, Y-Acc, Z-Acc, X+Y+Z-Acc, Std_w50(X+Y+Z-Acc)2 98.07 %
5 X-Acc, Y-Acc, Z-Acc, X+Y+Z-Acc, Std_w50(X+Y+Z-Acc)3 97.81 %
6 X-Acc, Y-Acc, Z-Acc, X+Y+Z-Acc, Std_w50(X+Y+Z-Acc)4 96.28 %

Another direction was conducted in order to establish the
number of sensors and their optimal placement. We acquired
600 samples for each activity, from three acceleration
sensors placed on different parts of the body. One is placed
on the right hand (Acc1), a second one above the right knee
(Acc2) and the third one on the chest (Acc3). After a few
first experiments it was obvious that the third accelerometer
is difficult to wear and does not significantly improve the
results. This is why it wasn’t used in further experiments.
The results concerning recognition rates in different
arrangements of sensors are summarised on Table III. 2Acc
is the setup with both sensors Acc1 and Acc2. For 2Acc
configuration we present results for ANNs with one hidden
layer with 20, 25 and 30 neurons and for an ANN having
two hidden layers with 15 and 25 neurons respectively.

Fig. 6. Recognition rate using data from one acceleration sensor and
different preprocessed input signals.

TABLE III. RECOGNITION RATES AS FUNCTION OF SENSORS
ARRANGEMENTS.

Acc1 Acc2 2ACC 2ACC 2ACC 2ACC
20 neur. 20 neur. 20 neur. 25 neur. 30 neur. 15 + 25 neur.

1 99,97 % 100,00 % 100,00 % 99,98 % 99,91 % 99,98 %
2 100,00 % 99,96 % 99,93 % 100,00 % 99,99 % 99,53 %
3 99,94 % 100,00 % 100,00 % 99,52 % 99,95 % 100,00 %
4 98,99 % 99,63 % 99,47 % 99,98 % 99,76 % 99,98 %
5 99,51 % 99,69 % 99,46 % 99,32 % 99,61 % 99,88 %
6 99,51 % 100,00 % 99,46 % 99,68 % 99,64 % 99,51 %
7 95,73 % 99,14 % 99,53 % 98,02 % 99,54 % 99,41 %
8 97,73 % 99,02 % 99,51 % 99,51 % 99,51 % 99,75 %
9 97,57 % 95,29 % 94,34 % 97,25 % 99,16 % 98,39 %

10 96,83 % 95,19 % 96,61 % 98,63 % 97,62 % 98,58 %
11 94,28 % 95,35 % 98,25 % 98,35 % 97,79 % 99,09 %
12 99,01 % 97,21 % 98,61 % 98,78 % 98,32 % 99,75 %
13 97,51 % 97,48 % 97,97 % 99,00 % 98,91 % 99,93 %
14 96,41 % 96,71 % 97,30 % 96,79 % 97,57 % 97,86 %
15 97,23 % 97,61 % 98,87 % 98,59 % 98,69 % 98,81 %
16 95,77 % 98,05 % 98,61 % 99,09 % 98,88 % 99,01 %
17 98,47 % 99,09 % 98,86 % 99,09 % 99,24 % 99,16 %
All 97,91 % 98,20 % 98,63 % 98,92 % 99,06 % 99,33 %

Figure 7 shows the recognition rates of the static activities
(Standing, Sitting, Supine, Prone, Left lateral recumbent,
Right lateral recumbent) as a function of different sensors
arrangements and the number of neurons on the hidden level
of the neural network.

In Fig. 8 we can see the recognition rates for selected
dynamic activities (Walking, Running, Standing up/Sitting
down, Falling, Climbing stairs, Descending stairs) as a
function of different sensors arrangements.

Observing the results presented in Fig. 7 and Fig. 8 it can
be concluded that overall recognition rate for the static
activities is better than for dynamic activities.

70



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

Acc1 Acc2 2Acc (20n) 2Acc (25n) 2Acc (30n) 2Acc (15+25n)
98.8

99

99.2

99.4

99.6

99.8

R
ec

og
ni

tio
n 

ra
te

Number of sensors and neurons on the hidden layer

Standing
Sitting
Supine
Prone
Left lateral recumbent
Right lateral recumbent

Fig. 7. Recognition rates for static activities.
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Fig. 8. Recognition rates for selected dynamic activities.
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Fig. 9. Comparison between recognition rates for static and selected dynamic activities.

Analysing the results from the point of view of the sensors
setup and the number of neurons of the neural network, it
can be seen that for static activities the recognition rates are
between 0.5 % limits for all possible combinations. For all
dynamic activities the best results could be obtained using
the two accelerometers setup and an ANN with 2 hidden
layers. For the selected dynamic activities we obtained good
results even for the one accelerometer setup (Acc2) that
implies that we can use a simpler artificial neural network
with one hidden layer with only 20 neurons. This setup
represents the best trade-off between recognition rate and the
complexity of the recognition system.

IV. CONCLUSIONS

This work presents studies made regarding recognition of
usual human activities using ANNs. The recognition system
is a part of a larger system developed for assisting elderly or
peoples with special needs. The human activity and health
parameters monitoring system was developed and optimised
regarding good recognition rate using minimal resources.

The use of ANN was found to be very effective even for
architectures with one hidden layer with 20 neurons. It was
demonstrated that even using a single 3-axis acceleration tag
combined with proper signal preprocessing e.g., mean,
standard deviation, etc. very high recognition rates can be
obtained. Comparing our results with those presented in
[20]–[25] we can conclude that our method give better
results. As expected the recognition rate for the static
activities was better than for dynamic activities. We made
also frequency domain analysis. FFT transform was used to
determine the stepping rate in walking and running activities.
We also implemented and tested a real time recognition
system using Raspberry Pi mini-computer. Further research
will be made regarding the best performing, hardware
implementation friendly, ANN.
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