
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 4, 2015

1Abstract—The fast Fourier transformation algorithm (FFT)
probably is the most important algorithm in the digital signal
processing. It is an efficient algorithm to the discrete Fourier
transformation which determines the frequency components of
a discrete time-varying signal. Nowadays, it has a huge impact
on the modern society because the FFT is running on more
billion devices (e.g. smartphones) on the planet all the time and
this tendency is continuously increasing. Moreover, this
algorithm plays a key role in the computer science and
engineering. Consequently, a well optimized algorithm can save
tremendous resources (calculation capacity and memory).

This paper presents a new relation between “twiddle
factors” and gives an optimised form to the existing relations.
In the paper the experimental results prove the efficiency of the
proposed relations. By the new relations every radix-r and
split-radix FFT will be more efficient because it accelerates the
algorithm and/or saves memory.

Index Terms—Digital signal processing, Fourier transforms,
optimization, signal processing algorithms.

I. INTRODUCTION

The discrete Fourier transform (DFT) is among the most
fundamental method in the digital signal processing (DSP).
However, its wide use was restricted by its computational
needs. In 1965 Cooley and Tukey presented an efficient
algorithm to the DFT which reduces the number of
operations from N2 to Nlog2(n) where N is power of two (2n)
[1]. It was an important milestone in the DSP research.
Thereafter, many articles presented refinements to the
original algorithm such us decimation in frequency (DIF),
higher radices, specialised fast Fourier transform (FFT) to
real data, etc. A clear and detailed review about the FFT
evolution can be found in [2].

Nowadays, more methods exist for computing the DFT
efficiently. Generally, the radix-4 and split-radix algorithms
are used when the sample size is power of two whereas the
prime factor algorithm is popular for size having co-prime
factors [3]–[6].

In many cases, the very-large-scale integration (VLSI)
design largely determines the usefulness of a given FFT
algorithm. It means that the efficiency of an FFT algorithm
depends on the applied processor architecture [7], [8]. In
addition, the most FFT algorithms are well parallelisable,

Manuscript received January 5, 2015; accepted May 24, 2015.

therefore, in multiprocessor systems the parallelisation
accelerates the transformation [9]–[11]. However, in single
processor systems the parallelisation does not cause
significantly acceleration. In this case, a sequential algorithm
is more advantageous.

Independently of the applied implementation technique
and architecture the relations which will be discussed in
section III are similarly important.

II.THEORETICAL BACKGROUND

The DFT is a main part of the Fourier analysis and it is a
very important part of DSP because various DSP
applications such as filtering and correlation analysis depend
on it. Generally, the DFT of an x(α) time-varying signal with
N samples

N 1
N

0
X () x() ,ακ

α
κ α

 (1)

where 0, , 1.N

2π
i

NN e ,
ακακ

 (2)

where X(κ) denotes the frequency coefficients, TN
ακ is the

“twiddle factor”, α is index in the time domain, κ is index in
the frequency domain and i is the imaginary unit. Every fast
algorithm for DFT is based on the “divide and conquer”
idea. The radix-2 decimation in time (DIT) FFT decomposes
the input signal into its even and odd components, thus the
DFT can be written as

N/2 1 N/2 1 (2 1)2
N N

0 0
N/2 1 N/2 1

N/2 N N/2
0 0

X () x(2) x (2 1)

x (2) x (2 1) .

α κακ

α α

ακ κ ακ

α α

κ α α

α α

 (3)

In the above equation TN
κ in the κ’th root of unit (“twiddle

factor” where α = 1). Equation (3) can be written in a
simpler form (4) if we use the symmetry (5) between roots:

even N oddX () DFT () DFT () ,κκ α α (4)

A New Relation between “Twiddle Factors” in
the Fast Fourier Transformation

Jozsef Suto1,2, Stefan Oniga1

1Department of Informatics Systems and Networks, University of Debrecen,
Egyetem ter 1, 4032 Debrecen, Hungary

2Institute for Nuclear Research, Hungarian Academy of Science,
Bem ter 18/c, H-4026 Debrecen, Hungary

suto.jozsef@inf.unideb.hu

http://dx.doi.org/10.5755/j01.eee.21.4.12784

56

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 4, 2015

even N oddX () DFT () DFT () ,κκ α α (5)
N/2

N N .κ κ (6)

In (4) κ = 0, …, N/2-1, in (5) κ = N/2,…, N-1 and α = 0,
…, N/2-1 in both formulas. When the number of samples is
a power of four (N = 4n), the radix-4 FFT algorithm (7) is
more efficient than radix-2. The radix-4 and split-radix
(mixture of radix-2 and radix-4) FFT algorithms take
advantage of another symmetry of roots (8) to reduce the
multiplications by ±i [12]. The radix-4 algorithm splits the
input sequence into four subparts thereby it decreases the
number of stages by one [13], [14]:

N/4 1 3 N/4
NN

0 0
N/4 1 3

N
0 0

NX () (x ())
4

N(x()(i)) ,
4

ρκ ακ

α ρ

ρκ ακ

α ρ

κ α ρ

α ρ

 (7)

N/4
N Ni .κ κ (8)

In the above equation ρ denotes the subpart index.

III. THE PROPOSED RELATIONS

Equation (7) can be written in the following form where
Re and Im refers to the real a complex parts:

Im Re
N 4

N N ,κ / κ (9)

Re Im
N/4

N N .κ κ (10)

The above new forms are more efficient than (8), because
these do not require complex multiplication.

Beyond (6) and (8), another important relation exists
between the roots. According to the previous statements, we
should focus on the first N/4 roots. For instance, if we
assume N = 16 and we use the Euler form (11), the first N/4
roots will be (12)–(15). The Euler form separates the real
and imaginary parts of a complex number and it is very
useful in programming because the programmer can contain
the two parts in two different vectors in the program code:

ie cos() isin(),θ θ θ (11)
i2π0/16e cos(0) isin(0), (12)

i2π1/16 π πe cos() isin(),
8 8

 (13)

i2π2/16 π πe cos() isin(),
4 4

 (14)

i2π3/16 3π 3πe cos() isin().
8 8

 (15)

In the above equations there is a further relation between
(13) and (15) since:

π 3πcos() sin(),
8 8
 (16)

3π πcos() sin().
8 8
 (17)

This comes from the property of the sine and cosine
functions because there is a π/2 shift between them [15]:

πcos() sin(),
2

θ θ (18)

πsin() cos().
2

θ θ (19)

The above relations can be observed between the roots
when N is power of two. Generally, it can be written as:

n 2

n 1 n 1
π (2 1)πcos() sin(),

2 2

 (20)

n 2

n 1 n 1
(2 1)π π

cos() sin().
2 2

 (21)

Equation (22) is the proof of (20) and (23) is the proof of
(21):

n 2 n 2

n 1 n 1

n 2 n 2

n 1 n 1 n 1

n 2 n 2

n 2 n 1 n 1 n 1

(2 1)π 2 π π
sin() sin()

2 2
π 2 π π π 2 π πcos(()) cos()
2 22 2 2

2 π 2 π π π
cos() cos(),

2 2 2 2

 (22)

n 1 n 1

n 2 n 2

n 1 n 1 n 1

n 2

n 1

π π πsin() cos()
22 2

2 π π 2 π π
cos() cos()

2 2 2
(2 1)πcos().

2

 (23)

Fig. 1. The effect of the relations. On the figure the same colour indicates
that roots which are in relation.

Finally, the newly generated properties (20) and (21) can

57

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 4, 2015

be written in more efficient and simpler forms (24) and (25),
similarly as in (9) and (10), if we suppose that N ≥ 16 and 0
< k < N/4:

Im Re
N/4

N N ,κ κ (23)

Re Im
N/4

N N .κ κ (24)

Figure 1 shows the location of the roots in the complex
plane and the effect of (6), (9), (10), (24) and (25) relations
(N = 16). This clearly illustrates that it is enough to compute
the first (N/8 + 1) roots to the FFT algorithm.

The new relation reduces the number of complex roots
again, thus it saves memory and/or computational capacity.
Consequently, it is enough to calculate the first (N/8 + 1)
roots because other roots can be derived.

IV. EXPERIMENTAL RESULTS

In order to measure the effect of the proposed relations,
we created a modified radix-2 FFT algorithm which utilises
(6), (9), (10), (24) and (25). The new relations modify the
original “butterfly” structure. Figure 2 illustrates a new
structure where the proposed relations were applied in a
radix-2 DIF FFT algorithm (N = 16).

The modified algorithm was compared with two general
radix-2 implementations which can be found in [16], [17]. In
most cases the implementation depends on the application
type. We should implement the transformation according to
the architecture, number of samples (N) and the applied
programming language or abstraction level. This test mainly
focuses on that case when the algorithms are sequential and
the sample size is power of two. As it was mentioned
previously, the efficiency of the algorithm depends on the
architecture. Therefore, in the test four different
architectures were used so that the survey will be more

reliable.
 Microchip PIC32 32-bit MIPS processor
 Raspberry Pi (RPi) minicomputer
 BeagleBone Linux computer
 Simple PC
All used devices have different properties. The Chipkit

Max32 board contains a PIC32 microcontroller which has
80 MHz clock signal and includes a 128K SDRAM. The
central processing unit of the RPi is an ARM11 which is
running at 700 MHz. The BeagleBone contains an AM335x
720 MHz ARM Cortex-A8 processor. Finally, the PC has an
Intel Pentium 2.2 GHz processor. Obviously, the speed of an
algorithm depends on lots of parameters but now these are
insignificant. During the test, the three algorithms (modified
FFT, FFT A and FFT B) get a random signal with different
size and calculate the transformation 100 times. Finally, the
program gives back an average value about the runtime.

Each FFT algorithms were implemented in ANSI C
programming language, because all the four devices ensure
C compiler. Table I shows the test results where the time
dimension is in second.

TABLE I. TEST RESULTS.

Device Samples (N) Modified
FFT FFT A FFT B

PIC32 1024 0.051 0.199 0.198
RPi 1024 0.009 0.017 0.013

BeagleBone 1024 0.006 0.030 0.034
PC 1024 0.0003 0.001 0.0007

PIC32 8192 0.650 2.271 2.259
RPi 8192 0.107 0.177 0.155

BeagleBone 8192 0.072 0.344 0.368
PC 8192 0.003 0.012 0.007

PIC32 65536 6.146 21.698 21.584
RPi 65536 1.297 1.629 1.569

BeagleBone 65536 0.849 3.322 3.375
PC 65536 0.038 0.115 0.069

Fig. 2. The “butterfly” structure of the modified algorithm. On the figure +/- indicates the correct sing according to the proposed relations.

58

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 4, 2015

V.CONCLUSIONS

In the paper we presented a new relation between “twiddle
factors” in (20) and (21) and its proof in (22) and (23) which
was not mentioned in the literature yet. This relation reduces
the number of necessary roots to the fast Fourier
transformation. Moreover, we proposed more efficient forms
to an existing and to the new relation in (9), (10), (24) and
(25). To support the proposed relations, we made a survey
where a modified radix-2 FFT was compared to two other
algorithms. The experimental results clearly indicate that the
modified FFT is more efficient than other general
algorithms. Since less roots are enough for the algorithm
thus the root calculation time is greatly reduced. In addition,
the test results show architecture dependence of algorithms.
FFT A is faster than FFT B on the BeagleBone while on
other devices FFT A is slower. Furthermore, the modified
FFT is more efficient on PIC32 and BeagleBone than on the
RPi.

Today, the Internet of Things (IoT) is a dynamically
extending research area. The IoT is a network of different
things or objects which can communicate sense and interact
to each other via the Internet [18]–[21]. In many cases, the
objects are little devices which belong to two main
categories: controllers and sensors. A controller can be a
mini-computer, microcontroller and FPGA [22]–[23].
Generally, the controllers perform every data processing.
However, most controllers have limited calculation and
storage capacity. This can cause problem when the controller
performs DSP algorithms or applications. It means that, an
optimised FFT algorithm which utilises every relation (in
optimised form) between the complex roots can be very
useful on such devices. Moreover, the power consumption
will be similarly more effective.

REFERENCES

[1] J. W. Cooley, J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series”, Mathematics of Computation, vol. 19,
pp. 297-301, 1965. [Online]. Available: http://dx.doi.org/10.1090/
S0025-5718-1965-0178586-1

[2] P. Duhamel, M. Vetterli, “Fast Fourier transforms: a tutorial review
and a state of the art”, Signal Processing, vol. 19, pp. 259–299, 1990.
[Online]. Available: http://dx.doi.org/10.1016/0165-1684(90)90158-
U

[3] S. Bouguezel, M. O. Ahmad, M. N. S. Swamy, “An efficient split-
radix FFT algorithm”, in Proc. Int. Symp. on Circuits and Systems,
Bangkok, 2003, pp. 25–28. [Online]. Available: http://dx.doi.org/
10.1109/iscas.2003.1205774

[4] S. C. Chan, “Split vector-radix fast Fourier transform”, IEEE Trans.
Signal Processing, vol. 40, pp. 2029–2039, 1992. [Online].
Available: http://dx.doi.org/10.1109/78.150004

[5] S. Bouguezel, M. Omair Ahmad, M. N. S. Swamy, “Improved radix-4
and radix-8 FFT algorithms”, in Proc. Int. Symp. on Circuits and
Systems, Vancouver, 2004, pp. 561–564. [Online]. Available:
http://dx.doi.org/10.1109/iscas.2004.1328808

[6] S. Bouguezel, M. Omair Ahmad, M. N. S. Swamy, “A new radix-2/8

FFT algorithm for length-q x 2m DFTs”, IEEE Trans. on Circuits and
System, vol. 51, pp. 1723–1732, 2004. [Online]. Available:
http://dx.doi.org/10.1109/TCSI.2004.834508

[7] D. Rodriguez, “A new FFT algorithm and its implementation on the
DSP 96002”, in Proc. Int. Conf. on Acoustics, Speech, and Signal
Processing, Toronto, 1991, pp. 2189–2192.

[8] D. A. Bader, V. Agarwal, “FFTC: fastest Fourier transform for the
IBM cell broardband engine”, Lecture Notes in Computer Science,
vol. 4873, pp. 172–184, 2007. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-77220-0_19

[9] Z. Cui-xiang, H. Gou-qiang, H. Ming-He, “Some new parallel fast
Fourier transform algorithms”, in Proc. 6th Int. Conf. on Parallel and
Distributed Computing, Applications and Technologies, Dalian,
2005, pp. 624–628. [Online]. Available: http://dx.doi.org/
10.1109/pdcat.2005.224

[10] Yuan-Nan Chang, K. K. Parhi, “Efficient FFT implementation using
digit-serial arithmetic”, in Proc. IEEE Workshop on Signal
Processing Systems, Taipei, 1999, pp. 645–653.

[11] E. Chu, A. George, “FFT algorithms and their adaptation to parallel
processing”, Linear Algebra and its Applications, vol. 284, pp. 95–
124, 1998. [Online]. Available: http://dx.doi.org/10.1016/S0024-
3795(98)10086-1

[12] L. Jia, B. Li, Y. Gao, H. Tenhunen, “Implementation of a low power
128-point FFT”, in Proc. 5th Int. Conf. on Solid-State and Integrated
Circuit Technology, Beijing, 1998, pp. 369–372.

[13] A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time-frequency
Transforms and Applications. Chichester, England: John Wiley &
Sons, 1999, ch 4. [Online]. Available: http://dx.doi.org/10.1002/
0470841834

[14] J. Suto, S. Oniga, Gy. Hegyesi, “A simple fast Fourier transformation
algorithm to microcontrollers and mini computers”, in 18th Int. Conf.
on Intelligent Engineering Systems, Tihany, 2014, pp. 61–65.
[Online]. Available: http://dx.doi.org/10.1109/ines.2014.6909342

[15] P. Shirley, S. Marschner, M. Ashikhmin, M. Gleicher, N. Hoffman,
G. Johnson, T. Munzner, E. Reinhard, K. Sung, W. B. Thompson,
P. Willemsen, B. Wyvill, Fundamentals of Computer Graphics, CRC
press, Boca Raton, 2009, pp. 18–20.

[16] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. USA: California Technical Publisher, 1999, pp. 141–
242.

[17] C. V. Loan, Computational Framework for the fast Fourier
Transform. USA: Siam, 1992, ch. 1. [Online]. Available:
http://dx.doi.org/10.1137/1.9781611970999

[18] Gy. Terdik, Z. Gal, “Advances and practice in Internet of Things: a
case study”, in Proc. IEEE 4th Int. Conf on Cognitive
Infocommunications, Budapest, 2013, pp. 435–440. [Online].
Available: http://dx.doi.org/10.1109/coginfocom.2013.6719286

[19] C. Lung, S. Oniga, A. Buchman, A. Tisan, “Wireless data acquisition
system for IoT applications”, Carpathian J. of Electronic and
Computer Engineering, vol. 6, pp. 64–67, 2013.

[20] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, “Internet of Things
(IoT): a vision, architectural elements, and future directions”, Future
Generation Computer Syst., vol. 29, pp. 1645–1660, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.future.2013.01.010

[21] Z. Gal, B. Almasi, T. Daboczi, R. Vida, S. Oniga, S. Baran, I. Farkas,
“Internet of Things: application areas and research results of the
FIRST project”, Infocommunications J., vol. 6, pp. 37–44, 2014.

[22] S. Oniga, J. Suto, “Human activity recognition using neural
networks”, in Proc. 15th Int. Carpathian Control Conf. (ICCC
2014), Velke Karlovice, Czech Republic, 2014, pp. 403–406.
[Online]. Available: http://dx.doi.org/10.1109/carpathiancc.2014.
6843636

[23] J. Suto, S. Oniga, I. Orha, “Microcontroller based health monitoring
system”, in Proc. 19th Int. Symp. for Design and Technology in
Electronic Packaging, Galati, 2013, pp. 227–230. [Online].
Available: http://dx.doi.org/10.1109/siitme.2013.6743679

59

