Model of Multiphase Induction Motor

B. Kundrotas, S. Lisauskas, R. Rinkeviciene
Department of Automation, Vilnius Gediminas Technical University,
Naugarduko str. 41, LT-03227 Vilnius, Lithuania, phone: +370 5 2744763, e-mails: benas.kundrotas@el.vgtu.lt,
saulius.lisauskas@el.vgtu.lt, roma.rinkeviciene@el.vgtu.lt

Introduction

Multi-phase motor drives have been studied from more than thirty years. Since the last two years, the interest has grown so that some international power electronic conferences have hosted sessions on the multi-phase motor drives [1].

Generally, multi-phase machines drive has many advantages over conventional three-phase drive such as high power handling capability by dividing the required power between multiple phases, reduced torque pulsations and higher reliability. In particular, unlike in a three phase drive, the loss of stator phase does not prevent the machine from starting and running. Other advantages of multi-phase systems, are increased torque per ampere for the same volume machine, reduced stator copper losses and reduced rotor harmonic currents [2].

The main application areas of multiphase induction-motor drives are ship propulsion, traction (including electric and hybrid electric vehicles) and the concept of „more-electric“ aircraft [3]. Other suitable applications are locomotive traction [1], aerospace and high power applications [2]. The six phase motor has some advantages against the other multiphase motors: the six phase motor, fed by frequency converter, has no the third of aliquot to three magnetic flux harmonics [4–6].

The main focus of this paper is developing dynamic model of six-phase induction motor, simulation and analysis of the dynamic characteristics of the motor.

Dynamic Model of Six-phase Induction Motor

It is evident that the six-phase induction machine has six phase windings in the stator. But regarding rotor, some arguments exist about how many phases should be used in the analysis and modeling. In the modeling some researches [7] used six rotor phase windings, while others adopted three rotor phase windings [8, 9, 10].

Dynamic model for motor with three-phase rotor winding and six-phase stator winding is developed. Assumption of different number of phases in the stator and the rotor corresponds to application of wound rotor induction motor. Using a three-phase rotor for modeling gives a clear concept of per phase equivalent circuit or arbitrary rotating reference frame equivalent circuit. Fig. 1 shows the representation of the motor stator windings as well as the set of three rotor phase windings and phasors.

![Fig. 1. Stator and rotor windings and phasors of the six-phase induction machine](image-url)
\[
\begin{align*}
&u_{qs1} = r_s i_{qs1} + s \psi_{qs1} + \omega \psi_{ds1}; \\
&u_{qs2} = r_s i_{qs2} + s \psi_{qs2} + \omega \psi_{ds2}; \\
&u_{ds1} = r_s i_{ds1} + s \psi_{ds1} - \omega \psi_{qs1}; \\
&u_{ds2} = r_s i_{ds2} + s \psi_{ds2} - \omega \psi_{qs2}; \\
&i_{qr} = r_s i_{qr} + s \psi_{qr} + (\omega - \omega_r) \psi_{dr}; \\
&i_{dr} = r_s i_{dr} + s \psi_{dr} - (\omega - \omega_r) \psi_{qr};
\end{align*}
\]

where the flux linkage expressed as:
\[
\begin{align*}
\psi_{qs1} &= L_{ls} i_{qs1} + L_{lm} (i_{qs1} + i_{qs2}) + L_m \left(i_{qs1} + i_{qs2} + i_{qr} \right); \\
\psi_{ds1} &= L_{ls} i_{ds1} + L_{lm} (i_{ds1} + i_{ds2}) + L_m \left(i_{ds1} + i_{ds2} + i_{dr} \right); \\
\psi_{qs2} &= L_{ls} i_{qs2} + L_{lm} (i_{qs1} + i_{qs2}) + L_m \left(i_{qs1} + i_{qs2} + i_{qr} \right); \\
\psi_{ds2} &= L_{ls} i_{ds2} + L_{lm} (i_{ds1} + i_{ds2}) + L_m \left(i_{ds1} + i_{ds2} + i_{dr} \right); \\
\psi_{qr} &= i_{dr} i_{qr} + L_m \left(i_{qs1} + i_{qs2} + i_{qr} \right); \\
\psi_{dr} &= i_{dr} i_{dr} + L_m \left(i_{ds1} + i_{ds2} + i_{dr} \right);
\end{align*}
\]

where \(\psi_{qs1}, \psi_{qs2} \) are stator \(q \)-axis flux linkages components, \(\psi_{ds1}, \psi_{ds2} \) are stator \(d \)-axis flux linkages components, \(\psi_{qr}, \psi_{dr} \) are rotor \(q \)-axis and \(d \)-axis flux-linkage component, \(i_{qs1}, i_{qs2} \) are stator \(q \)-axis currents components, \(i_{ds1}, i_{ds2} \) are stator \(d \)-axis currents components, \(i_{qr}, i_{dr} \) are rotor \(q \)-axis and \(d \)-axis current components, \(L_s \) is stator leakage inductance, \(L_m \) is air gap inductance, \(L_l \) is stator mutual leakage inductance, \(L_r \) is rotor leakage inductance, \(s \) is Laplace operator, \(\omega \) is synchronous speed of one pole induction motor the same as speed of rotating magnetic field, \(r_s \) is stator resistance \(u_{qs1}, u_{qs2}, u_{ds1}, u_{ds2} \) and \(u_{dr}, u_{qr} \) are voltages of stator windings and rotor windings correspondingly.

The voltage and flux linkage equations corresponds the equivalent circuits, shown in Fig. 2.

The electromagnetic torque can be expressed in the synchronous dq reference frame as
\[
T_e = \frac{3}{2} \left(\frac{P}{2} \right) \left[\psi_{dr} (i_{qs1} + i_{qs2}) - \psi_{qr} (i_{ds1} + i_{ds2}) \right];
\]

where \(P \) is number of pole pairs.

The equation of drive movement is written as
\[
\frac{d\omega_r}{dt} = \frac{1}{J_r} (T_e - T_L);
\]

where \(T_L \) is load torque.

Computer model of six-phase induction machine

Equations (1, 2, 3, 4) are represented in matrix form (5) as
\[
A \times x = F;
\]

where matrix A is expressed as:
\[
A = \begin{bmatrix}
a_{11} & a_{12} & 0 & 0 & a_{15} & 0 & 0 \\
0 & 0 & a_{23} & a_{24} & 0 & a_{26} & 0 \\
0 & 0 & a_{31} & a_{32} & 0 & 0 & a_{35} \\
0 & 0 & a_{43} & a_{44} & 0 & a_{46} & 0 \\
a_{51} & a_{52} & 0 & 0 & a_{55} & 0 & 0 \\
0 & 0 & a_{63} & a_{64} & 0 & a_{66} & 0 \\
0 & 0 & a_{73} & a_{74} & 0 & a_{76} & a_{77}
\end{bmatrix}
\]

where
\[
a_{11} = a_{22} = a_{33} = a_{44} = L_{ls} + L_{lm} + L_m, \quad a_{12} = a_{23} = a_{45} = L_{ls} + L_{lm} + L_m, \quad a_{15} = a_{26} = a_{35} = a_{46} = a_{51} = \ldots,
\]

\[
a_{51} = a_{63} = a_{73} = a_{74} = L_m a_{55} = a_{66} = a_{76} = L_{lr} + L_m, \quad a_{77} = J_r.
\]

Matrix F is written as:
\[
F = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \\ F_5 \\ F_6 \\ F_7 \end{bmatrix};
\]

where
\[
F_1 = u_{qs1} - i_{qs1} i_{qr} - \omega \cdot i_{ds1} (L_{ls} + L_{lm} + L_m) - \omega \cdot i_{ds1} L_m; \\
F_2 = u_{ds1} i_{ds2} + \omega \cdot i_{qs2} (L_{ls} + L_{lm} + L_m) + \omega \cdot i_{qs2} L_m; \\
F_3 = u_{qs2} - i_{qs2} i_{dr} - \omega \cdot i_{ds2} (L_{ls} + L_{lm} + L_m) - \omega \cdot i_{ds2} L_m; \\
F_4 = u_{ds2} - i_{ds2} i_{dr} + \omega \cdot i_{qs1} (L_{ls} + L_{lm} + L_m) + \omega \cdot i_{qs1} L_m; \\
F_5 = u_{qr} - i_{qr} i_{dr} - \omega \cdot i_{ds1} (L_{ls} + L_{lm} + L_m) - \omega \cdot i_{ds1} L_m; \\
F_6 = u_{dr} - i_{dr} i_{dr} + \omega \cdot i_{qs1} (L_{ls} + L_{lm} + L_m) + \omega \cdot i_{qs1} L_m; \\
F_7 = u_{qr} - i_{qr} i_{dr} - \omega \cdot i_{ds1} L_m - \omega \cdot i_{ds1} i_{dr} (L_{lr} + L_m);
\]
\[F_6 = u_{dr} - i_{dr} r_{r}' + (\omega - \omega_r) \cdot i_{qs1} L_{m} + (\omega - \omega_r) \cdot i_{qs2} L_{m} + \\
(\omega - \omega_r) \cdot i_{ds1} L_{m} + (\omega - \omega_r) \cdot i_{ds2} (L_{dr} + L_{m}); \]
\[F_7 = \frac{3}{2} P L_{mr} \left(\psi_{dr} \left(i_{qs1} + i_{qs2} \right) - \psi_{qr} \left(i_{ds1} + i_{ds2} \right) \right). \]

Matrix of variables \(x \) is expressed as
\[
x = \begin{bmatrix}
\frac{di_{qs1}}{dt} \\
\frac{di_{ds1}}{dt} \\
\frac{di_{qs2}}{dt} \\
\frac{di_{ds2}}{dt} \\
\frac{d\psi_{dr}}{dt} \\
\frac{d\psi_{qr}}{dt} \\
\frac{di_{dp}}{dt} \\
\frac{d\omega_r}{dt}
\end{bmatrix},
\tag{8}
\]

According to Eq. 5 the MATLAB model was elaborated. Dormand-Prince method (ode45) was used to solve the set of discussed equations.

Results of simulation

Parameters of the modeled motor are presented in Table 1.

Table 1. Motor parameters

<table>
<thead>
<tr>
<th>(R_s)</th>
<th>(R_{r}')</th>
<th>(L_{ds})</th>
<th>(L_{dr})</th>
<th>(L_{m})</th>
<th>(L_{im})</th>
<th>(U_0)</th>
<th>(\omega)</th>
<th>(J_r)</th>
<th>(\Omega)</th>
<th>(\Omega)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55</td>
<td>1.04</td>
<td>5.2</td>
<td>9.3</td>
<td>0.3</td>
<td>0.035</td>
<td>220</td>
<td>314</td>
<td>0.07</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 3 shows starting transients of six-phase motor at no load. The settling time is 0.45 s. Due to torque oscillations in the beginning of process, oscillation of speed also are seen.

Fig. 3. Speed response of six-phase induction motor

Response of torque, developed by motor is presented in Fig. 4. The greatest value of torque is equal to 175 N·m.

The steady-state of torque is equal to zero while motor is starting at no load.

Fig. 4. Response of torque

Direct and quadrature components of stator currents are presented in Fig. 5 and Fig. 6.

Fig. 5. Components of stator currents in synchronous reference frame

Fig. 6. Transient of stator A phase current at no load

Conclusions

Mathematical and computer model of multiphase motor with six-phase stator winding and three phase rotor winding in the synchronous reference frame is elaborated. Equivalent circuits per phase of motor for direct and quadrature axis are presented.

Starting transients of torque, speed and current obtained by solving of differential equations of the motor
are qualitatively close to that of three phase induction motor.

Electromagnetic transients last about 0.2 s causing torque oscillations of great amplitude and torque ripples.

References

Received 2011 02 15